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Cohen MA, Alvarez GA, Nakayama K, Konkle T. Visual search
for object categories is predicted by the representational architecture
of high-level visual cortex. J Neurophysiol 117: 388–402, 2017. First
published November 2, 2016; doi:10.1152/jn.00569.2016.—Visual
search is a ubiquitous visual behavior, and efficient search is essential
for survival. Different cognitive models have explained the speed and
accuracy of search based either on the dynamics of attention or on
similarity of item representations. Here, we examined the extent to
which performance on a visual search task can be predicted from the
stable representational architecture of the visual system, independent
of attentional dynamics. Participants performed a visual search task
with 28 conditions reflecting different pairs of categories (e.g., search-
ing for a face among cars, body among hammers, etc.). The time it
took participants to find the target item varied as a function of
category combination. In a separate group of participants, we mea-
sured the neural responses to these object categories when items were
presented in isolation. Using representational similarity analysis, we
then examined whether the similarity of neural responses across
different subdivisions of the visual system had the requisite structure
needed to predict visual search performance. Overall, we found strong
brain/behavior correlations across most of the higher-level visual
system, including both the ventral and dorsal pathways when consid-
ering both macroscale sectors as well as smaller mesoscale regions.
These results suggest that visual search for real-world object catego-
ries is well predicted by the stable, task-independent architecture of
the visual system.

NEW & NOTEWORTHY Here, we ask which neural regions have
neural response patterns that correlate with behavioral performance in
a visual processing task. We found that the representational structure
across all of high-level visual cortex has the requisite structure to
predict behavior. Furthermore, when directly comparing different
neural regions, we found that they all had highly similar category-
level representational structures. These results point to a ubiquitous
and uniform representational structure in high-level visual cortex
underlying visual object processing.

brain/behavior correlations; cognition; fMRI; representational simi-
larity analysis; vision

WE SPEND A LOT OF TIME looking for things: from searching for
our car in a parking lot to finding a cup of coffee on a cluttered
desk, we continuously carry out one search task after another.
However, not all visual search tasks are created equal: some-
times what we are looking for jumps out at us, while other

times we have difficulty finding something that is right in front
of our eyes. What makes some search tasks easy and others
difficult?

Most prominent cognitive models of visual search focus on
factors that determine how attention is deployed, such as
bottom-up stimulus saliency or top-down attentional guidance
(Itti and Koch 2000; Nakayama and Martini 2011; Treisman
and Gelade 1980; Wolfe and Horowitz 2004). Accordingly, the
majority of neural models of visual search primarily focus on
the mechanisms supporting attention in the parietal and frontal
cortices (Buschman and Miller 2007; Eimer 2014; Kastner and
Ungerleider 2000; Treue 2003) or examine how attention
dynamically alters neural representations within occipitotem-
poral cortex when there are multiple items present in the
display (Chelazzi et al. 1993; Luck et al. 1997; Peelen and
Kastner 2011; Reddy and Kanwisher 2007; Seidl et al. 2012).
Other cognitive work that does not focus on attention has
explored how representational factors contribute to visual
search speeds, such as target-distractor similarity (Duncan and
Humphreys 1989). These representational factors might reflect
competition between stable neural representations (Cohen et al.
2014, 2015; Scalf et al. 2013) rather than the flexibility of
attentional operations. Here, we extend this representational
framework by relating visual search for real-world object
categories to the representational architecture of the visual
system.

Prior work relating perceptual similarity and neural similar-
ity can provide some insight into the likely relationship be-
tween visual search and the architecture of the visual system.
In particular, a number of previous studies have explored how
explicit judgments of the similarity between items are corre-
lated with measures of neural similarity in various regions
across the ventral stream (Bracci et al. 2015; Bracci and Op de
Beeck 2016; Carlson et al. 2014; Edelman et al. 1998; Haush-
ofer et al. 2008; Jozwik et al. 2016; Op de Beeck et al. 2008;
Peelen and Caramazza 2012). For example, Bracci and Op de
Beeck (2016) asked how the similarity structures found within
a variety of regions across the visual system reflected shape/
perceptual similarity, category similarity, or some combina-
tion. This study, along with several others, found a transition
from perceptual/shape representations in posterior visual re-
gions (Edelman et al. 1998; Op de Beeck et al. 2008) to more
semantic/category representations in anterior visual regions
(Bracci et al. 2015; Bracci and Op de Beeck 2016; Connolly et
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al. 2012; Prokolova et al. 2016), with both kinds of structure
coexisting independently in many of the regions. Thus, to the
extent that visual search is correlated with perceptual and/or
semantic similarity, then we are likely to find that visual search
correlates with at least some of regions of the visual system.

Expanding on this previous work, here we explore an ex-
tensive set of neural subdivisions of the visual system at
different spatial scales to determine which neural substrates
have the requisite representational structure to predict visual
search behavior for real-world object categories. The broadest
division of the visual system we considered is between the
ventral and dorsal visual pathways, canonically involved in
processing “what” and “where/how” information about ob-
jects, respectively (Goodale and Milner 1992; Mishkin and
Ungerleider 1982). This classic characterization predicts a
relationship between search behavior and representational sim-
ilarity in ventral stream responses, but not dorsal stream
responses. Consistent with this assumption, most prior work
examining neural and perceptual similarity has not explored
the dorsal stream. Further, the ventral visual hierarchy pro-
gresses from representing relatively simple features in early
areas to increasingly complex shape and category information
in higher-level visual areas (Bracci and Op de Beeck 2016;
DiCarlo et al. 2012). This hierarchy predicts that representa-
tional similarity for higher-level object information will be
reflected in the neural representations of higher-level visual
areas. However, this relationship may be complicated by the
fact that the ventral stream contains regions that respond
selectively to some object categories (e.g., faces, bodies, and
scenes; Kanwisher 2010). Given these distinctive regions, it is
possible that the visual search speeds between different pairs of
categories can only be predicted by pooling neural responses
across large sectors of the ventral stream that encompass
multiple category-selective subregions.

To examine the relationships between visual search and
neural representation, we first measured the speed of visual
search behavior between high-level object categories (e.g., the
time it takes to find a car among faces, or a body among
hammers). Given the combinatorial considerations, we pur-
posefully selected 8 object categories that spanned major
known representational factors of the visual system (e.g.,
animacy, size, faces, bodies, and scenes; Huth et al. 2012;
Kanwisher 2010; Konkle and Caramazza 2013), yielding 28
possible object category pairs. We then recruited a new group
of participants and measured neural responses by using func-
tional neuroimaging (fMRI) while they viewed images of these
object categories presented in isolation while performing a
simple vigilance task. By obtaining neural response patterns to
each category independently, this design enables us to test the
hypothesis that competition between pairs of categories in
visual search is correlated with the stable representational
architecture of the visual system. Finally, we used a represen-
tational similarity approach to relate behavioral measures to a
variety of subdivisions of the visual system (Kriegeskorte et al.
2008a).

In addition to comparing visual search performance with
neural measures, we had a third group of observers perform
similarity ratings, explicitly judging the similarity between
each pair of categories. These data enabled us to examine
whether visual search shows correlations with neural similarity
above and beyond what we would expect from explicit simi-

larity judgments. If so, it would suggest that the similarity that
implicitly limits visual search is at least partially distinct from
the similarity that is captured by explicit similarity ratings.

MATERIALS AND METHODS

Participants. Sixteen observers (ages 18–35, 9 women) partici-
pated in the visual search behavioral experiments. Another group of
16 observers (ages 23–34, 10 women) participated in the similarity
ratings experiment. Six participants (ages 20–34, 3 women), includ-
ing author M.A.C., participated in the neuroimaging experiment. Both
of these sample sizes were determined based on pilot studies estimat-
ing the reliability of the behavioral and neural measures. All partici-
pants had normal or corrected-to-normal vision. All participants gave
informed consent according to procedures approved by the Institu-
tional Review Board at Harvard University.

Stimuli. Eight stimulus categories were used for both the behavioral
and fMRI experiments: bodies, buildings, cars, cats, chairs, faces,
hammers, and phones. Thirty exemplars within each category were
selected so that there would be high within-category diversity (e.g.,
images of items taken from different angles, in different positions,
etc.) (Fig. 1A). In addition, all images were matched for average
luminance, contrast, and spectral energy across the entire image by
using the SHINE toolbox (Willenbockel et al. 2010). The selection
and processing of stimuli was done to minimize the extent to which
visual search could depend on low-level features that differentiate the
stimulus categories.

Behavioral experiment materials. The experiment was run on a
24-inch Apple iMac computer (1,920 � 1,200 pixels, 60 Hz) created
and controlled with MATLAB and the Psychophysics Toolbox
(Brainard 1997; Pelli 1997). Participants sat �57 cm away from the
display, where 1 cm on the display corresponds to 1° of visual angle.

Visual search paradigm. Participants performed a visual search
task in which a target from one category had to be detected among
distractors from another (e.g., a face among cars). On each trial, eight
images were presented in a circular arrangement, 11.5° from a central
fixation point (Fig. 1B). The same eight locations were used through-
out the experiment. Each image was viewed through a circular
aperture (radius � �3.25°) with Gaussian blurred edges.

The visual search task was comprised of eight blocks. Each block
had 10 practice trials and 112 experimental trials and corresponded to
a particular target category (e.g., “In this block, look for a face”). The
order in which the blocks were presented was counterbalanced across
subjects by a balanced Latin square design (Williams 1949). Within
each block, a target was shown on half the trials at a randomly chosen
location, and participants reported whether an item from the target
category was present or absent. Responses were given via button
presses on the keyboard with visual feedback given immediately.
Critically, on each trial, the distractors were chosen from only one of
the remaining categories (e.g., a face among 7 distractor cars). Thus,
each target-present display tested a particular category pairing. Across
every block, each of the seven distracting categories appeared equally
often. For each participant, trials in which the response times were
less than 300 ms or greater than 3 standard deviations from the mean
were excluded.

Neuroimaging paradigm. Functional neuroimaging (fMRI) was
used to obtain whole-brain neural response patterns for these object
categories by using a standard blocked design. Each participant
completed four experimental runs, one meridian mapping run used to
localize early visual cortex (V1-V3), and two localizer runs used for
defining all other regions of interest. All data was collected with a 3T
Siemens Trio scanner at the Harvard University Center for Brain
Sciences. Structural data were obtained in 176-axial slices with 1 �
1 � 1 mm voxel resolution, TR � 2,200 ms. Functional blood
oxygenation level-dependent data were obtained by a gradient-echo
echo-planar pulse sequence (33 axial slices parallel to the anterior
commissure-posterior commissure line; 70 � 70 matrix; FoV �
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256 � 256 mm; 3.1 � 3.1 � 3.1 mm voxel resolution; Gap
thickness � 0.62 mm; TR � 2,000 ms; TE � 60 ms; flip angle �
90°). A 32-channel phased-array head coil was used. Stimuli were
generated with the Psychophysics Toolbox for MATLAB and
displayed with an LCD projector onto a screen in the scanner that
subjects viewed via a mirror attached to the head coil.

Neuroimaging experimental runs. Experimental runs were part of a
larger project within our laboratory. Thus, more categories were
presented than were ultimately used for this project. While being
scanned, participants viewed images from nine categories: bodies,
buildings, cars, cars, chairs, faces, fish, hammers, and phones. Fish
were not presented in the visual search experiment (see above), and
fMRI data from fish were not analyzed for this study. Stimuli were
presented in a rapid block design with each 4-s block corresponding
to one category. Six images were shown in each block for 667
ms/item. Images were presented in isolation and participants were
instructed to maintain fixation on a central cross and perform a
vigilance task, pressing a button indicating when a red circle appeared
around one of the images. The red circle appeared on 40% of blocks
randomly on images 2, 3, 4, or 5 of that block. In each run, there were
90 total blocks with 10 blocks per category. All runs started and ended
with a 6-s fixation block, and further periods of fixation that could last
2, 4, or 6 s were interleaved between stimulus blocks, constrained so
that each run totaled 492 s. The order of the stimulus blocks and the
sequencing and duration of the fixation periods was determined using
Optseq (http://surfer.nmr.mgh.harvard.edu/optseq/).

Localizer runs. Participants performed a one-back repetition detec-
tion task with blocks of faces, bodies, scenes, objects, and scrambled
objects. Stimuli in these runs were different from those in the
experimental runs. Each run consisted of 10 stimulus blocks of 16 s,
with intervening 12-s blank periods. Each category was presented
twice per run, with the order of the stimulus blocks counterbalanced
in a mirror reverse manner (e.g., face, body, scene, object, scrambled,
scrambled, objects, scene, body, face). Within a block, each item was
presented for 1 s followed by a 330-ms blank. Additionally, these
localizer runs contained an orthogonal motion manipulation: in half of
the blocks, the items were presented statically at fixation. In the
remaining half of the blocks, items moved from the center of the
screen toward either one of the four quadrants or along the horizontal
and vertical meridians at 2.05°/s. Each category was presented in a
moving and stationary block.

Meridian map runs. Participants were instructed to maintain fixa-
tion and were shown blocks of flickering black and white checker-
board wedge stimuli, oriented along either the vertical or horizontal
meridian (Sereno et al. 1995; Wandell 1999). The apex of each wedge
was at fixation, and the base extended to 8° in the periphery, with a
width of 4.42°. The checkerboard pattern flickered at 8 Hz. The run
consisted of four vertical meridian and four horizontal meridian
blocks. Each stimulus block was 12 s with a 12-s intervening blank
period. The orientation of the stimuli (vertical vs. horizontal) alter-
nated from one block to the other.

Analysis procedures. All fMRI data were processed with Brain
Voyager QX software (Brain Innovation, Mastricht, the Netherlands).
Preprocessing steps included 3D motion correction, slice scan-time
correction, linear trend removal, temporal high-pass filtering (0.01 Hz
cutoff), spatial smoothing (4 mm FWHM Kernel), and transformation
into Talairach space. Statistical analyses were based on the general
linear model. All GLM analyses included box-car regressors for each
stimulus block convolved with a gamma function to approximate the
idealized hemodynamic response. For each experimental protocol,
separate GLMs were computed for each participant, yielding beta
maps for each condition for each subject.

Defining neural sectors. Sectors were defined in each participant by
the following procedure. Using the localizer runs, a set of visually
active voxels was defined based on the contrast of [Faces � Bodies �
Scenes � Objects � Scrambled Objects] vs. Rest (FDR � 0.05,
cluster threshold 150 contiguous 1 � 1 � 1 voxels) within a gray
matter mask. To divide these visually-responsive voxels into sectors,
the early visual sector included all active voxels within V1, V2, and
V3, which were defined by hand on an inflated surface representation
based on the horizontal vs. vertical contrasts of the meridian mapping
experiment. The occipitotemporal and occipitoparietal sectors were
then defined as all remaining active voxels (outside of early visual),
where the division between the dorsal and ventral streams was drawn
by hand in each participant based on anatomical landmarks and the
spatial profile of active voxels along the surface. Finally, the occipi-
totemporal sector was divided into ventral and lateral sectors by hand
using anatomical landmarks, specifically the occipitotemporal sulcus.

To define category-selective regions, we computed standard con-
trasts for face selectivity (faces�[bodies scenes objects]), scene se-
lectivity (scenes�[bodies faces objects]), and body selectivity
(bodies�[faces scenes objects]) based on independent localizer runs.
For object-selective areas, the contrast of objects�scrambled was

Bodies Chairs

Stimuli Sample DisplayBA

FacesBuildings

Cars Hammers

PhonesCats

Fig. 1. A: examples of stimuli from each of the eight categories. B: sample display of a target-present trial from the visual search task On this trial, one target
item (e.g., a face) was shown among seven distracting items from another category (e.g., cars).
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used. Category-selective regions included fusiform face area (FFA)
(faces), parahippocampal place area (PPA) (scenes), extrastriate body
area (EBA) (bodies), and lateral occipital (LO) (objects). In each
participant, face-, scene-, body-, and object-selective regions were
defined by using a semiautomated procedure that selects all significant
voxels within a 9-mm-radius spherical region of interest (ROI) around
the weighted center of category-selective clusters (Peelen and Down-
ing 2005), where the cluster is selected based on proximity to the
typical anatomical location of each region based on a meta-analysis.
This is a standard procedure, yielding appropriately sized category-
specific ROIs. All ROIs for all participants were verified by eye and
adjusted if necessary. Any voxels that fell in more than one ROI were
manually inspected and assigned to one particular ROI, ensuring that
there was no overlap between these ROIs.

Representational similarity analysis. To explore the relationship
between behavioral and neural measures, we used representational
similarity analysis to compute a series of brain/behavior correlations
targeting different neural subdivisions within the visual hierarchy.
This required constructing a “representational geometry” from both
behavioral and neural measures that could then be directly compared
with one another (Kriegeskorte and Kievit 2013). A representational
geometry is the set of pairwise similarity measures across a given set
of stimuli. To construct our behavioral representational geometry, our
similarity measure was the average reaction time it took to find a
target from one category among distractors from another. For each
category pairing, we averaged across which category was the target
(i.e., the face/hammer pairing reflects trials in which observers
searched for a face among hammers and a hammer among faces) to
get one reaction time value per pairing. To construct our neural
representational geometry, our similarity measure was the correlation
across all voxels in a particular neural region between all possible
category pairings (i.e., the correlation between faces and cars in
ventral occipitotemporal cortex). These geometries were then corre-
lated with one another to produce brain/behavior correlations in all
neural regions.

Statistical analysis of brain/behavior correlations. The statistical
significance of these correlations was assessed using both 1) group-
level permutation analyses and 2) linear mixed effects (LME) analy-
ses. The first method is standard, but reflects fixed effects of both
behavioral and neural measures, which is well suited for certain cases
[e.g., in animal studies where the number of participants is small, e.g.,
Kriegeskorte et al. (2008b)]. The second method uses an LME model
to estimate the brain/behavior correlation with random effects across
both behavioral and neural measures (Barr et al. 2013; Winter 2013).
This analysis takes into account the mixed nature of our design (i.e.,
that there are within-subject behavioral measures, within-subject neu-
ral measures, and between-subject comparisons). Unlike the group-
level analysis, these mixed effects models enable us to determine
whether brain/behavior correlations generalize across both behavioral
and neural participants.

For the permutation analyses, the condition labels of the data of
each individual fMRI and behavioral participant were shuffled and
then averaged together to make new, group-level similarity matrices.
The correlation between these matrices was computed and Fisher
z-transformed, and this procedure was repeated 10,000 times, result-
ing in a distribution of correlation values. A given correlation was
considered significant if it fell within the top 5% of values in this
distribution. For visualization purposes, all figures show the relation-
ship between the group-average neural measures and group-average
behavioral measures, with statistics from the group-level permutation
analysis.

For LME modeling, we modeled the Fisher z-transformed correla-
tion values between all possible fMRI and behavioral participants as
a function of neural region. This included random effects analyses of
neuroimaging and behavioral participants on both the slope term and
intercept of the model, which was the maximal random effects
structure justified by the current design (Barr et al. 2013). All

modeling was implemented using the R packages languageR (Baayen
2009) and lme4 (Bates and Maechler 2009). To determine if correla-
tions were statistically significant, likelihood ratio tests were per-
formed in which we compared a model with a given brain region as
a fixed effect to another model without it, but that was otherwise
identical. P values were estimated by using a normal approximation of
the t-statistic, and a correlation was considered significant if P � 0.05
(Barr et al. 2013).

Reliability analysis. The reliability of each group-level neural
geometry was estimated by the following procedure: for each partic-
ipant, the data were divided into odd and even runs, and two inde-
pendent neural geometries were estimated. Group-level geometries
were calculated by averaging across participants, yielding separate
odd and even-run representational similarity matrices. These matrices
were correlated to estimate the split-half reliability and then adjusted
with the Spearman-Brown formula to estimate the reliability of the
full data set (Brown 1910; Spearman 1910). This procedure was
carried out separately for each neural region.

To determine whether differences in the strength of brain/behavior
correlations across neural regions can be explained by differences in
reliability, we adjusted the brain behavior correlations. To do this, we
used the correction for attenuation formula: the observed brain/
behavior correlation from a given neural region divided by the square
root of the reliability of that region (Nunnally and Bernstein 1994).

Searchlight analysis. To examine the relationship between neural
structure and behavioral performance within and beyond our selected
large-scale sectors, we conducted a searchlight analysis (Kriegeskorte
et al. 2006). For each subject, we iteratively moved a sphere of voxels
(3-voxel radius) across all locations within a subject-specific gray
matter mask. At each location, we measured the response pattern
elicited by each of the eight stimulus categories. Responses to each
category were correlated with one another, allowing us to measure the
representational geometry at each searchlight location. That structure
was then correlated with the behavioral measurements, resulting in an
r-value for each sphere at every location.

One-item search task. The same 16 behavioral participants also
completed a one-item search task. Since there was only one item on
the display at a time, whatever effects we find cannot be due to
competition between items or limitation of attention and must be due
to the similarity of a target template held in memory and the item
being considered on the display. On every trial, participants were
shown one item on the screen and had to say whether or not that item
belonged to a particular category (i.e., “Yes or no, is this item a
face?”). The item was viewed through a circular aperture (radius
�3.25°) with Gaussian blurred edges, and positioned with some
random jitter so that the image fell within �7° from fixation.

The task was comprised of eight blocks that contained 10 practice
and 126 experimental trials. Each block corresponded to a particular
object category (e.g., “In this block, report whether the item is a
face”). The order in which the blocks were presented was counterbal-
anced across subjects with a balanced Latin square design (Williams
1949). Within each block, the target item was present on half of the trials,
and participants reported whether the item belonged to the target category
with a yes/no button response. Critically, when the item was not from the
target category, it was from one of the remaining seven distractor
categories. For the purposes of this study, the reaction to reject a
distractor was taken as our primary dependent measure. For example, the
average time to reject a car as not-a-face was taken as a measure of
car/face similarity. For each participant, trials in which the response times
were less than 300 ms or greater than 3 standard deviations from the
mean were excluded.

Explicit similarity ratings task. A new group of 16 participants who
did not perform the previous search tasks were recruited to provide
similarity ratings on the eight stimulus categories. To familiarize
participants with the full stimulus set, they were presented with Apple
Keynote slides that had each stimulus from a given category on a
particular slide (i.e., “Here is one slide with all 30 of the faces,” etc.).

391NEURAL ORGANIZATION CONSTRAINS VISUAL COGNITION

J Neurophysiol • doi:10.1152/jn.00569.2016 • www.jn.org

 by 10.220.33.2 on A
ugust 16, 2017

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


Participants were allowed to study them for as long as they wanted
before beginning the task. We then showed participants pairs of
category names (e.g., “Faces and Cars”) and instructed them to
“Please rate these categories according to their similarity on a 0–100
scale, with 0 indicating that these categories are not at all similar and
100 indicated that these categories are highly similar.” Participants
then rated the similarity of every category pairing. The order in which
they were cued to rate a particular category pairing was randomized
across participants, and participants were allowed to review and
change the ratings they provided at any time. Additionally, the
stimulus slides remained available throughout the experiment in case
they wanted to reexamine the images.

Partial correlation analysis. In addition to computing standard
brain/behavior correlations, we also computed several partial correla-
tions in which we measured the relationship between a given behav-
ioral task (e.g., visual search) and a neural region (e.g., ventral
occipitotemporal cortex) while factoring out the contribution of an-
other behavioral task (e.g., the similarity ratings task). The formula for
determining the partial correlation between two variables (X and Y),
while controlling for a third variable (z) is:

rxy � rxzryz

�(1 � rxz
2 )(1 � ryz

2 )

Animacy category model analysis. To determine the extent to
which our behavioral and neural measures were driven by the distinc-
tion between the animate categories (i.e., faces, bodies, and cats) and
inanimate categories (i.e., buildings, cars, chairs, hammers, and
phone), we constructed an animacy category model following the
procedures of Khaligh-Razavi et al. (2014). In this case, when one
category was animate (e.g., faces) and another category was inanimate
(e.g., buildings), that category pairing was designated as a 0. When
both categories were animate (e.g., faces and bodies), that category
pairing was designated as a 1. When both categories were inanimate
(e.g., cars and chairs), that category pairing was designated as a 2. To
measure the strengths of the correlations between this model and our
behavioral and neural measures, we computed Spearman’s rank cor-
relation coefficient. Statistical significance of these correlations was
determined by group-level permutation analyses.

RESULTS

Visual search task. Observers completed a visual search
task, and their reaction time to find a target from one category
among distractors from another category was measured for all
28 combinations of our eight selected categories (Fig. 1A). We

examined reaction times for all target-present trials in which
the participant responded correctly (with accuracies at 92% or
higher across participants). As anticipated, some combinations
of categories were faster than others, ranging from reaction
times of 874 to 1,352 ms [F(1,27) � 14.85, P � 0.001] (Fig.
2). Seven of the nine fastest conditions contained a pairing with
the face category, consistent with previous results showing an
advantage for faces in visual search (Crouzet et al. 2010).
However, even excluding faces, the remaining category pair-
ings showed significant differences, ranging from 1,019 to
1,352 ms [F(1,20) � 7.71, P � 0.001]. Thus, there was
significant variability in search times for different pairs of
categories, and the full set of 28 reaction times were used to
construct a behavioral representational similarity matrix. The
key question of interest is whether representational similarity
within different areas of the visual system can predict this
graded relationship of visual search reaction times across pairs
of categories.

We made an a priori decision to focus on correct target-
present responses because target-absent trials can depend on
observer-specific stopping rules and decision processes (Chun
and Wolfe, 1996). However, we found that target-absent trials
showed a similar overall representational geometry: the corre-
lation between target-absent and target-present reaction times
was high (r � 0.92, P � 0.001).

Major visual system subdivisions. Armed with this pattern of
visual search speeds, we examined whether this similarity
structure is evident across major neural divisions of the visual
system. Macroscale neural sectors were defined to capture the
major divisions of the visual processing hierarchy, including
early visual cortex, ventral stream, and dorsal stream regions
(Fig. 3A). In addition, we further divided the ventral pathway
into ventral and lateral occipitotemporal sectors, given the
mirrored representation of response selectivities across occipi-
totemporal cortex (Konkle and Caramazza 2013; Taylor and
Downing 2011), and the fact that some evidence suggests that
the ventral surface is more closely linked to perceptual simi-
larity than the lateral surface (Haushofer et al. 2008).

The relationship between the neural and behavioral similar-
ity measures at the group level is plotted for each sector in Fig.
3B. We observed strong brain/behavior correlations across the
ventral stream: ventral occipitotemporal (r � 0.77; permuta-
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The actual reaction time values are reported in
APPENDIX.
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tion analysis: P � 0.001; mixed effects model parameter
estimate � 0.64, t � 11.81, P � 0.001), lateral occipitotem-
poral (r � 0.65; P � 0.001; parameter estimate � 0.49, t �
6.78, P � 0.001). We also observed significant correlations in
the dorsal stream sector: occipitoparietal (r � 0.49; P � 0.01;
parameter estimate � 0.26, t � 3.15, P � 0.05). Taken
together, these analyses revealed a robust relationship between
the functional architecture of each high-level division of the
visual processing stream and visual search speeds.

In contrast, the correlation in early visual cortex (V1-V3)
was not significant (r � 0.12; permutation analysis: P � 0.26;
parameter estimate � 0.09, t � 0.97, P � 0.33). This low
correlation was expected, given that the object exemplars in
our stimulus set were purposefully selected to have high
retinotopic variation and were matched for average luminance,
contrast, and spectral energy. These steps were taken to isolate
a category-level representation, which is reflected in the fact
that all pairs of object categories had very similar neural
patterns in early visual cortex (range r � 0.87–0.96).

Comparing the brain/behavior correlations across sectors,
the ventral occipitotemporal cortex showed the strongest rela-
tionship to behavior relative to all other sectors (LME param-
eter estimates � �0.15, t � �2.03, P � 0.05 in all cases),
consistent with Haushofer et al. (2008). Further, the correlation
in lateral occipitotemporal cortex was greater than those in
occipitoparietal and early visual cortex (parameter estimates �
�0.23, t � �3.74, P � 0.001 in both cases), and the correla-
tion in occipitoparietal cortex was marginally greater than that
in early visual cortex (parameter estimate � �0.16, t � �1.82,
P � 0.06).

However, comparisons between brain regions should be
interpreted with caution, as differences in the strength of the
brain/behavior correlation could be driven by noisier neural

measures in some regions. Overall, the neural sectors had high
reliability, ranging from r � 0.56 in occipitoparietal cortex to
r � 0.95 ventral occipitotemporal cortex (Fig. 4A). After
adjusting for neural reliability, the differences in brain/behav-
ior correlation across ventral and parietal cortex were reduced,
while the correlation between early visual cortex and behavior
remained low (Fig. 4B). Thus, we did not observe strong
evidence for major dissociations among the ventral and dorsal
stream sectors in their relationship to these behavioral data.

Searchlight analysis. Does this brain/behavior relationship
only hold when considering neural responses pooled across
large swaths of cortex, or can such a relationship be observed
at a smaller spatial scale? To address this question, we con-
ducted a searchlight analysis (Kriegeskorte et al. 2006), in
which brain/behavior correlations were computed for all
3-mm-radius spherical brain regions across the cortical surface.
The resulting brain/behavior correlation map is shown in
Fig. 5. These results show that the graded relationship between
visual categories that was observed in search behavior is also
strongly correlated with the neural similarity patterns in me-
soscale regions throughout the visual system except for early
visual cortex.

Delving into this result, we took a targeted look at several
classic regions of interest defined from a separate localizer.
The fusiform face area (FFA), extrastriate body area (EBA),
parahippocampal place area (PPA), and object preferential
lateral occipital (LO) were defined in each individual subject.
The neural similarities were then extracted and compared with
the visual search data. As implied by the searchlight analysis,
each of these category-selective regions had neural response
patterns that correlated with visual search speeds (Fig. 6A):
FFA (P � 0.001; parameter estimate � 0.53, t � 6.09, P �
0.001), PPA (P � 0.001; parameter estimate � 0.52, t � 6.01,
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P � 0.001), EBA (P � 0.01; parameter estimate � 0.34, t �
4.18, P � 0.001), and LO (P � 0.01; parameter estimate �
0.40, t � 9.50, P � 0.001).

Critically, we found that this brain/behavior relationship did
not depend on the category pairings that included preferred
category: after removing all category pairings with faces from
our analysis in FFA, a significant correlation with search
speeds was still evident (r � 0.67, P � 0.001; parameter
estimate � 0.39, t � 6.87, P � 0.001) and also remained when
excluding both faces and cats, which have faces (r � 0.61,
P � 0.001; parameter estimate � 0.32, t � 3.87, P � 0.001).
Similarly, the brain/behavior relationship was evident in PPA
when all pairings containing buildings were removed (r �
0.64, P � 0.001; parameter estimate � 0.51, t � 7.23, P �
0.001), and in EBA when bodies were removed (r � 0.67, P �
0.001; parameter estimate � 0.57, t � 4.49, P � 0.001) (Fig.

6B). These results show that the preferred categories of these
regions are not driving the brain/behavior correlations.

Brain/behavior correlations across search asymmetries. Up
until this point, we have measured the behavioral similarity
between any two categories in a way that ignores any potential
search asymmetries (e.g., the face and building pairing is
computed as the average of search times for a face among
buildings and a building among faces). The choice to collapse
over target categories was made a priori based on power
considerations for obtaining reliable behavioral measures, and
was further supported by a post hoc analysis showing that only
1 of the 28 pairs of categories had a significant asymmetry after
Bonferonni correcting for multiple comparisons: a face was
found among bodies faster than a body was found among faces
(RT � 900 ms, SEM � 56 ms vs. RT � 1,110 ms, SEM � 44
ms, respectively, P � 0.001). However, for completeness, we
calculated the brain/behavioral correlation using search times
separated by target category (56 points rather than 28 points).
As shown in Fig. 7, the pattern of results is the same when
breaking down search times by target category.

Brain/behavior correlations between individual participants.
The figures above show group-level correlations (average behav-
ioral reaction time vs. average neural similarity), with statistics
calculated by group-level permutation analyses. We additionally
performed linear mixed effects (LME) analyses, which enable us
to determine whether brain/behavior correlations generalize
across both behavioral and neural participants. These LME anal-
yses operate over data at the level of individual participants,
considering each individual behavioral participant correlated with
each individual neural participant (see parameter estimates
above).

To visualize the full set of data at the level of individual
participants, Fig. 8A depicts all possible individual-by-individ-
ual brain/brain, behavior/behavior, and brain/behavior correla-
tions for the large-scale sectors, category-selective ROIs, and
search task. Figure 8B visualizes the group averages of each
brain/brain and brain/behavior correlation (e.g., the average
individual-by-individual correlation when correlating FFA
with PPA). This figure highlights that any two individuals are
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relatively similar both in terms of their behavioral similarities,
their neural similarities, and critically in how one individual’s
behavioral similarity predicts another individual’s neural sim-
ilarity structure. Thus, even when considering data at the

individual level, there are robust brain/behavior correlations
evident in all high-level visual regions beyond early visual
cortex. These results support the conclusion that there is a
stable, task-independent architecture of the visual system that
is common across individuals and that is strongly related to
visual search performance.

One-item search task. It is possible that representational
similarity is a factor in visual search because the search
displays have both object categories present and there is
competition between the simultaneously presented categories
(Cohen et al. 2014). However, visual search also requires
comparing a target template held in memory to incoming
perceptual information. To the extent that the target template
matches the evoked responses when seeing pictures (Harrison
and Tong 2009; Serences et al. 2009), then the neural repre-
sentational similarity will also limit this template-matching
process.

To test this possibility, we conducted a second behavioral
study where only one item was present in the display and the
task was to rapidly categorize the item (e.g., “Is this a face?”),
with a yes/no response (Fig. 9A). Here, the critical trials were
when the target category was absent and we measured the time
it takes to reject a distractor category (e.g., a body as not-a-
face, or a hammer as not-a-house) for all 28 possible pairs of
categories.

As with the visual search task, the categorization task
yielded significant differences in the time to reject a distractor
as a function of what target category they were looking for
[F(1,27) � 6.42, P � 0.001; Fig. 9B]. This pattern of response

Fig. 6. A: visualization of four category-selective regions from a representative participant. B: group-level brain/behavior correlations in each region. Each dot
corresponds to a particular category pairing (e.g., faces and hammers). Reaction times for each pairing are plotted on the y-axis, while the similarity of the neural
responses for those category pairings are plotted on the x-axis, separately for FFA (top), PPA (middle), and EBA (bottom). The panels at left show the
brain/behavior correlation with all category pairs included. The panels at right show the brain/behavior correlation with selected pairings removed. ***P � 0001.
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times was highly correlated with the visual search task with
eight items (r � 0.69; adjusted for reliability r � 0.84) and
with the neural responses of the higher-level visual system as
well (ventral occipitotemporal: P � 0.001; mixed effects
model parameter estimate � 0.45, t � 6.77, P � 0.001; lateral
occipitotemporal P � 0.01; parameter estimate � 0.32, t �
4.67, P � 0.001; occipitoparietal cortex: P � 0.001; parameter
estimate � 0.25, t � 5.95, P � 0.001) (Fig. 10). These results
demonstrate that representational similarity is a factor in
search, even when isolating the template-matching process.

Brain/behavior correlations and explicit similarity ratings.
All of our analyses thus far have focused on visual search
behavior (i.e., participants simply looked for a target category
on a display and responded as fast as they could). In this case,
the similarity relationship between pairs of categories is im-
plicit in performance: although participants were never asked
to judge similarity, we assume that search was slower for more
similar target-distractor pairs. In contrast, many prior studies
have used explicit measures of similarity in which participants
directly rate the similarity of different categories, focusing on
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perceptual similarity, semantic similarity, or just an overall
sense of similarity without more specific instructions (Bracci
and Op de Beeck 2016; Bracci et al. 2015; Carlson et al. 2014;
Edelman et al. 1998; Jozwik et al. 2016; Op de Beeck et al.
2008; Mur et al. 2013). This previous work has shown that
neural similarity within the ventral stream relates to explicit
similarity judgments. Thus, to the extent that visual search and
explicit ratings tap into the same similarity structure, the
relationship between search and neural similarity across the
ventral stream is expected from previous work on explicit
similarity ratings.

Is the similarity implicitly measured by visual search and the
explicit similarity found in a rating task the same, and do these
two behavioral similarities have the same relationship to neural
representation? To investigate these questions directly, we had
a new group of participants explicitly rate the similarity of our
stimulus categories and then examined how those ratings relate
to visual search performance and the neural responses.

Overall, we found that certain category pairings were rated
as being more similar than others [F(1,27) � 9.66, P � 0.001;
Fig. 11A]. The explicit ratings were significantly correlated with
the implicit similarity of the visual search task with eight items
(r � 0.44, P � 0.01) as well as the three higher-level neural
sectors (ventral occipitotemporal: r � 0.62, P � 0.001; lateral
occipitotemporal: r � 0.58, P � 0.001; occipitoparietal: r � 0.44,
P � 0.01), but not early visual cortex (r � 0.06, P � 0.38). Thus,
the explicit ratings task produced a relationship with the neural
responses that was qualitatively similar to the visual search task
(Fig. 11B).

Do explicit similarity judgments fully explain the link be-
tween visual search behavior and neural similarity? The search
and rating tasks were correlated with each other, but this
correlation was only moderate (r � 0.44), and thus it is

possible that these two tasks correlate with the neural results in
unique ways and account for different portions of the variance.
To directly examine this possibility, we computed a series of
partial correlations in which one behavioral task was factored
out from the other behavioral task and then correlated with the
neural sectors, and vice versa. If the two tasks account for the
same neural variance, the brain/behavior correlations should
drop to near zero when one of the tasks is factored out.
Contrary to this prediction, however, we found that the partial
correlations with both tasks remained high in occipitotemporal
cortex even after factoring out the other task (search factoring
out ratings: ventral occipitotemporal partial correlation � 0.70,
P � 0.001; lateral occipitotemporal partial correlation � 0.54
P � 0.01; ratings factoring out search: ventral occipitotempo-
ral partial correlation � 0.49, P � 0.05; lateral occipitotem-
poral partial correlation � 0.43 P � 0.05; Fig. 11B, dashed
lines). Meanwhile, the partial correlations in both occipitopa-
rietal and early visual cortex were not significant with either
task (P � 0.05 in all cases). Taken together, these results
indicate that the visual search behavior predicts some unique
variance in the neural geometry and is not fully explained by an
explicit similarity task.

Brain/behavior correlations and the animate/inanimate
distinction. We next examined the extent to which the brain/
behavior correlations we observed can be explained by the
dimension of animacy. The distinction between animate and
inanimate objects is one of the most replicated and well-
documented distinctions in both the behavioral and cognitive
neuroscience literature (Caramazza and Shelton 1998;
Kuhlmeier et al. 2005; Mahon and Caramazza 2009; Martin
2007; Spelke et al. 1995) and is currently the biggest explan-
atory factor in the representational geometry of high-level
categories (e.g., Huth et al. 2012; Konkle and Caramazza 2013;
Kriegeskorte et al. 2008a). Are the present results solely driven
by this distinction?

To examine this issue, we first asked how well a category
model based on animacy could explain the behavioral and
neural data. Comparing this model to the behavioral data, we
found strong correlations between the animacy model and
visual search performance (� � 0.67, P � 0.001) and the
one-item search task (� � 0.68, P � 0.001). Comparing this
model to the neural data, we also observed a systematic
relationship with the neural responses that was similar to those
in the visual search task with eight items (ventral occipitotem-
poral: � � 0.76, P � 0.001; lateral occipitotemporal: � � 0.74,
P � 0.001; occipitoparietal: � � 0.51, P � 0.01; early visual:
� � �0.02, P � 0.4778). Together, these results suggest that
a significant portion of the results reported thus far is due to the
animacy distinction.

Critically, if animacy were the only factor driving these
brain/behavior correlations, then we would not expect to see
brain/behavior correlations when only examining the within-
animate or within-inanimate category pairings. If such corre-
lations are observed, it would suggest that the animacy factor
is not solely driving our findings, and that more fine-grained
differences in neural similarity are mirrored by fine-grained
differences in search performance. To test this possibility, we
computed the brain/behavior correlations when only examin-
ing the inanimate categories (10 pairwise comparisons). We
did not compute correlations with the animate categories be-
cause there were only three animate categories (yielding only
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3 pairwise comparisons), preventing us from having enough
power to compute reliable correlations. Within the inanimate
categories, we found strong correlations in both ventral and
lateral occipitotemporal cortex (ventral occipitotemporal: r �
0.72, P � 0.001; lateral occipitotemporal: r � 0.66, P � 0.001)
but not in early visual cortex (r � 0.05, P � 0.46). Interest-
ingly, the correlation in occipitoparietal cortex dropped sub-
stantially (from r � 0.49, P � 0.01 to r � 0.19, P � 0.3031),
which suggests that object representations in the dorsal stream
are not as fined grained as in the ventral stream and are driven
more by the animacy distinction. More broadly, the fact that we
observe these brain/behavior correlations for inanimate cate-
gories in the ventral stream suggests that the animacy distinc-
tion is not the only organizing principle driving search perfor-
mance or the correlation between search and neural responses.

DISCUSSION

Visual search takes time, and that time depends on what you
are searching for and what you are looking at. Here, we
examined whether visual search for real-world object catego-
ries can be predicted by the stable representational architecture
of the visual system, looking extensively across the major
divisions of the visual system at both macro- and mesoscales
(e.g., category-selective regions). Initially, we hypothesized
that the representational structure within the ventral stream, but
not within early visual areas or the dorsal stream, would
correlate with visual search behavior. Contrary to this predic-
tion, however, we found strong correlations between visual
search speeds and neural similarity throughout all of high-level
visual cortex. We also initially predicted that this relationship
with behavior would only be observed when pooling over
large-scale sectors of the ventral stream, but found that it was
present within all mesoscale regions that showed reliable visual
responses in high-level visual cortex.

We conducted a number of further analyses that revealed
both the robustness of this relationship between visual search
and neural geometry and the novel contributions of these
findings. First, these brain/behavior correlations held in cate-
gory-selective ROIs even when the preferred category was

excluded from the analysis. Second, the correlations were
evident even when examining individual participants, and are
not just aggregate group-level relationships. Third, the brain/
behavior correlations cannot be fully explained by either ex-
plicit similarity ratings or by the well-known animacy distinc-
tion, which also helps situate this work with respect to previous
findings. Finally, a simplified visual search task with only one
item on the screen also showed a strong brain/behavior rela-
tionship, suggesting that search for real-world objects is highly
constrained by competition during the template-matching stage
of the task. Taken together, these results suggest that there is a
stable, widespread representational architecture that predicts
and likely constrains visual search behavior for real-world
object categories.

Scope of the present results. We made two key design
choices that impact the scope of our conclusions: 1) focusing
on representations at the category level and 2) using a rela-
tively small number of categories. First, we targeted basic-level
categories because of their particular behavioral relevance
(Mervis and Rosch 1981; Rosch et al. 1976) and because
objects from these categories are known to elicit reliably
different patterns across visual cortex. Consequently, we can-
not make any claims about item-level behavior/brain relation-
ships. Second, we selected a small number of categories to
ensure that we obtained highly reliable behavioral data (split-
half reliability: r � 0.88) and neural data (split-half reliability
range: r � 0.56 to r � 0.95 across sectors). It therefore remains
an empirical question whether this relationship holds for a
wider set of categories, and addressing this question will
require large-scale behavioral studies to measure the relation-
ship between more categories. However, we note that a brain/
behavior relationship was observed in category-selective re-
gions even when comparing the relationship among nonpre-
ferred categories (e.g., excluding faces and cats from FFA).
This result indicates that this relationship is not driven by
specialized processing of specific object categories, suggesting
that it will potentially hold for a broader set of categories.

Implications for the role of attention. Given what is known
about how attention dynamically alters representations in high-
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Fig. 11. A: explicit similarity ratings for all category pairings. Average similarity rating is plotted on the y-axis as a function of category pairing along on the
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level cortex (Çukur et al. 2013; David et al. 2008), one might
not have expected to find the high brain/behavior correlations
we observed here. For example, previous work has demon-
strated that when attention is focused on a particular target
object, target processing is enhanced and distractor processing
is suppressed (Desimone and Duncan 1998; Seidl et al. 2012).
In general, some evidence suggests that the representational
space across the entire brain is warped around the attended
object category (Çukur et al. 2013). If these attentional oper-
ations dramatically distorted the representational geometry,
they would likely change the relationship between target and
distractor neural representations during the search task and a
measurement of the stable architecture would not predict visual
search reaction times. Contrary to this idea, our data show a
clear relationship between neural architecture and visual search
reaction times: the neural responses of one group of partici-
pants viewing isolated objects without performing a search task
predicted most of the variance in search reaction times in a
separate group of participants. Taken together, these observa-
tions imply that attention alters neural responses in a way that
preserves the stable architecture without dramatically changing
its geometry. However, direct measures of neural representa-
tional geometries under conditions of category-based attention
must be obtained and related to behavior to investigate this
directly.

Another possibility, not mutually exclusive, is that our task
design and stimulus control happened to minimize the role of
attentional guidance. This is supported by two main observa-
tions. First, the overall reaction times in the main search task
were quite slow, indicating a relatively inefficient guidance of
attentional allocation to potential targets. This was true even
for the fastest category combinations (e.g., when faces were
presented among nonface objects or vice versa; Fig. 2). Previ-
ous work has shown that faces can “pop-out” among nonface
objects (Hershler and Hochstein 2005), and this pop-out can be
removed by matching stimuli on a variety of low-level features
(e.g., luminance, spectral energy, etc.; VanRullen 2006), as we
did in our stimulus set. If attentional guidance to likely target
locations mostly operates at these more basic levels of repre-
sentation (Wolfe and Horowitz 2004), then matching stimuli
on a variety of these low-level features would minimize the
role of this process. Second, we found that the eight-item
search task was highly correlated with the one-item search
task, which suggests that our behavioral data primarily or
exclusively reflects the template-matching process. Given
these observations, it is possible that only the template-match-
ing process is constrained by the representational architecture
of the visual system.

One integrative possibility is that search behavior is limited
by multiple bottlenecks that potentially vary as a function of
the stimuli and task demands. On such an account, search
difficulty hinges on 1) how well attention is deployed to likely
targets in a display and 2) how well a template-matching
process is carried out as a function of the stable architecture of
the visual system (i.e., what feature representations are distin-
guished naturally and which ones are not). In cases when lower
level features (e.g., color, orientation, etc.) distinguish the
target from the distractors, attentional allocation likely plays a
larger role than template-matching. Conversely, when simple
visual features do not easily distinguish items from one an-

other, as is likely the case with the stimuli used in this study,
the template-matching process plays a larger role.

Implications for representational similarity. Duncan and
Humphreys (1989) proposed what has become a prominent
cognitive model of visual search that emphasizes representa-
tional factors over attentional factors. Simply put, this model
states that search becomes less efficient as target/distractor
similarity increases and more efficient as target/distractor sim-
ilarity decreases. Of course, one of the deeper challenges
hidden in this proposal is what is meant by the word “similar-
ity.” In their initial studies, Duncan and Humphreys used
carefully controlled stimuli so that they could manipulate
target/distractor similarity themselves. With more naturalistic
stimuli, such as those used in the present experiments, it is
unclear how the similarity between different categories would
be determined. Here, we add to their broad framework by
demonstrating that target-distractor similarity relationships for
high-level visual stimuli can be estimated from the represen-
tational architecture of the high-level visual system. Mecha-
nistically, we suggest that it is this very architecture that places
constraints on the speed of visual processing.

Of course, the fact that neural measures can be used to
predict search behavior also does not fully answer the question
about what we mean by “similarity.” For example, does the
similarity structure driving these results reflect perceptual
properties, more semantic properties, or some combination of
both? A more complete picture would relate visual search
behavior with a computational model that explain these visual
search speeds and make accurate predictions for new combi-
nations of categories [e.g., see approaches by Yu et al. (2016)].
While we do not have that explanatory model, we took some
steps to explore this avenue by relating visual search behavior
to the dimension of animacy and to explicit similarity ratings.

These analyses yielded one expected and one unexpected
result. As expected, the animate/inanimate distinction was a
major predictive factor for both neural patterns and behavioral
search speeds. However, brain/behavior relationships were
found even when only considering pairs of inanimate catego-
ries, which do not span the animate/inanimate boundary. This
analysis indicates that animacy is not the only representational
factor driving the present results. Unexpectedly, we found that
explicit similarity ratings were only moderately correlated with
visual search speeds, and the two measures largely accounted
for different variance in the neural data. Why might this be the
case? Explicit similarity judgments are susceptible to the ef-
fects of context, frequency, task instructions, and other factors
(Tversky 1977). Thus, one possibility is that these judgments
rely on a more complex set of representational similarity
relationships than those indexed implicitly by visual search
behavior. In this case, it is possible that when doing a visual
search task, or when trying to probe ones intuitions about the
similarity of two categories, both of these tasks draw on the
representational architecture of the high-level visual system,
but not in exactly the same way.

Implications for the dorsal stream. Another unexpected
result was the relationship between visual search and neural
responses along the dorsal stream. While this brain/behavior
correlation in the parietal lobe is surprising from the perspec-
tive of the classic ventral/dorsal, what/where distinction, the
current results add to mounting evidence that object category
information is also found in the dorsal stream (Cohen et al.
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2015; Konen et al. 2008; Romero et al. 2014). There are at least
two possible accounts for this neural structure.

On one account, the parietal lobe may be doing the same
kind of representational work as the ventral stream. For exam-
ple, the searchlight analysis reveals that posterior occipitopa-
rietal cortex has the strongest relationship with search. Given
our increasing understanding of nearby regions like the occip-
ital place area (Dilks et al. 2013), it could be that this posterior
occipitoparietal cortex has a role that is more closely related to
the ventral stream (Bettencourt and Xu 2013). However, the
dorsal stream representations were nearly fully explained by
the animacy distinction unlike the ventral stream sectors,
pointing to a potential dissociation in their roles.

An alternative possibility draws on recent empirical work
demonstrating that certain dorsal stream areas have very spe-
cific high-level object information that is largely based on
task-relevance (Jeong and Xu 2016). In the present experi-
ment, participants were only doing a red-frame detection
task while in the scanner, but given the simplicity of this
task, the dorsal stream responses might naturally have a
passive reflection of the object category information in
ventral stream. While our data do not distinguish between
these alternatives, they clearly show that the posterior as-
pects of the parietal lobe contain object category informa-
tion that predicts visual search behavior.

Conclusion. Overall, these results suggest that the stable
representational architecture of object categories in the high-
level visual system is closely linked to performance on a visual
search task. More broadly, the present results fit with previous
work showing similar architectural constraints on other behav-
ioral tasks such as visual working memory and visual aware-
ness (Cohen et al. 2014, 2015). Taken together, this body of
research suggests that the responses across higher-level visual
cortex reflect a stable architecture of object representation that
is a primary bottleneck for many visual behaviors (e.g., cate-
gorization, visual search, working memory, visual awareness,
etc.).

APPENDIX

Reaction time results for the eight-item search task are reported in
Table A1. The first column corresponds to the reaction time when the
first category listed is the target (i.e., a body target among building
distractors), while the second column corresponds to the reaction time
when the second category is the target (i.e., a building target among
body distractors). The third column corresponds to the reaction time
when averaging across all trials for each category pairing regardless of
which category is the target. Note that the numbers in column three
are not the average of the numbers in columns one and two since there
are sometimes different numbers of trials in the different conditions
because of differences in accuracies or reaction time filtering.
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