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SUMMARY

While there are selective regions of occipitotemporal
cortex that respond to faces, letters, and bodies, the
large-scale neural organization of most object cate-
gories remains unknown. Here, we find that object
representations can be differentiated along the
ventral temporal cortex by their real-world size. In
a functional neuroimaging experiment, observers
were shown pictures of big and small real-world
objects (e.g., table, bathtub; paperclip, cup), pre-
sented at the same retinal size. We observed
a consistent medial-to-lateral organization of big
and small object preferences in the ventral temporal
cortex, mirrored along the lateral surface. Regions in
the lateral-occipital, inferotemporal, and parahippo-
campal cortices showed strong peaks of differential
real-world size selectivity and maintained these pref-
erences over changes in retinal size and in mental
imagery. These data demonstrate that the real-world
size of objects can provide insight into the spatial
topography of object representation.

INTRODUCTION

One of the most robust results in visual neuroscience is the
systematic response of a large section of ventral temporal cortex
to objects and shapes (Grill-Spector and Malach, 2004; Milner
and Goodale, 1995; Ungerleider and Mishkin, 1982). To date,
only a few object categories—namely faces, bodies, and letter
strings—have been shown to have focal cortical regions that
show strong category selectivity (Cohen et al., 2000; Downing
et al., 2001; Kanwisher et al., 1997; McCarthy et al., 1997).
Most other object categories such as shoes and cars do not
have a clear spatially clustered region of selective cortex but
instead activate a large swath of occipitotemporal cortex with
distinct and reliable patterns (Carlson et al., 2003; Cox and
Savoy, 2003; Haxby et al., 2001; Norman et al., 2006; O’Toole
et al., 2005). A fundamental endeavor of cognitive neuroscience
is to understand the nature of these object responses and how
they are organized across this cortex (e.g., Kourtzi and Connor,
2011; Ungerleider and Bell, 2011).

The animate-inanimate distinction is the only known dimen-
sion that gives rise to spatially large-scale differential patterns
of activity across ventral temporal cortex (e.g., Chao et al.,
1999; Kriegeskorte et al., 2008; Mahon and Caramazza, 2011):
this organization encompasses face- and body-selective regions
(Kanwisher et al., 1997; Peelen and Downing, 2005) and scene-
selective regions (Epstein and Kanwisher, 1998). For the remain-
ing object categories, which have a more distributed response,
there is currently no evidence for other factors that give rise to
a large-scale organization of this object information. Interest-
ingly, pattern analysis methods which can classify objects based
on the response profile in occipitotemporal cortex do not often
examine the spatial distribution of these activation profiles. Typi-
cally, these approaches assume that the distinctions between
these other kinds of objects are spatially heterogeneous,
reflected at a fine-scale of organization (e.g., Norman et al.,
2006). However, recent evidence shows that object classifica-
tion in this cortex is robust to increased spatial smoothing (Op
de Beeck, 2010) and can even generalize across subjects (Shin-
kareva et al., 2008). This suggests that there may be a large-
scale organization to these distributed object patterns that we
have not yet uncovered (Op de Beeck et al., 2008; Freeman
et al., 2011).
For an active observer in the natural world, objects are funda-

mentally physical entities. As such, an intrinsic but surprisingly
overlooked property of any object is its real-world size (Konkle
and Oliva, 2011). The size of objects in the world has conse-
quences for both the nature of the objects and our experiences
with them. For example, gravity and the laws of physics impose
specific constrains on the shape and material properties of
objects of different sizes. If an object is simply scaled up in
size, the increased weight per unit surface area will cause
objects with insufficient material strength to collapse, and
many natural objects tend to have optimized proportions that
are neither overly strong or weak for their size (Haldane, 1928;
Gordan, 1981). Additionally, the physical size of objects in the
world dictates how we interact with them: we pick up small
objects like strawberries and paperclips, but we sit in and
move around large objects like sofas and fountains. Thus
different-sized objects have different action demands and
typical interaction distances. Given these constraints of the
physical world on the properties of objects and how we experi-
ence them, we hypothesized that object representations may
be naturally differentiated by their real-world size, reflected in
a coarse spatial organization across occipitotemporal cortex.
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In the current study, we compared the cortical response to big
and small real-world objects. We specifically focused on the
representations of everyday inanimate objects, excluding faces,
bodies, animals, and classically defined tools. These everyday
objects often get grouped together as ‘‘other objects’’ (e.g.,
see Hasson et al., 2003; Op de Beeck et al., 2008) and are known
to have a distributed activation pattern across a large swath of
ventral-temporal cortex. Here, we examined whether voxels
along this cortex showed a preference for objects of big or small
real-world sizes. One possibility is that big and small object pref-
erences would be weak and heterogeneously distributed, in
a ‘‘salt-and-pepper’’ organization that is not consistent across
people. Instead, we observe that there are strong differential
responses to big and small objects, and these preferences are
grouped spatially in a medial-to-lateral arrangement across the
ventral surface of cortex. This organization of object information
is mirrored along the lateral surface, with an inferior-to-superior
arrangement of small-to-big object information.
Within this organization, we find reliable spatially clustered

regions that show peaks of differential selectivity to big and small
objects, evident at the single-subject level. We thus character-
ized the responses in these new functional regions-of-interest
to examine the nature of the object representations. We find
that responses here are selective to real-world size despite
changes in retinal size, indicating relatively high-level object-
centered responses. Further, these regions respond during
mental imagery of big and small objects, which is a characteristic
property of other nearby category-selective regions. Finally, we
find that these regions reflect information about the category of
the object rather than how big the object was conceived.

Broadly, these results show that real-world size is a large-scale
dimension that differentiates distributed object representations
in occipitotemporal cortex. We propose a potential account of
this organization, in which the size of objects in the world natu-
rally give rise to systematic biases in visual experience which
are extracted in early visual areas and ultimately dictate where
high-level object representations will be in anterior occipitotem-
poral cortex.

RESULTS

Organization of Big and Small Objects
In Experiment 1a, observers were presented with images of iso-
lated big objects (e.g., car, piano) and isolated small objects
(e.g., strawberry, safety pin), presented at the same retinal size
on the screen (Figure 1A; for all stimuli see Figure S1 available
online; see Experimental Procedures). The experiment consisted
of one run of 8.8 min of scanning, during which 200 distinct big
objects and 200 distinct small objects were presented in a stan-
dard blocked design (see Experimental Procedures). To
compare the neural response of big and small objects, we con-
ducted a size-preference map analysis and a whole-brain
contrast analysis.

Size-Preference Analysis
In the first analysis, we visualized the spatial distribution of small
and big object preferences across occipitotemporal cortex.
Size-preference maps were computed reflecting whether the
voxels had a preference for big objects (blue) or small objects
(orange) within an object-responsive mask (see Experimental

Figure 1. Size-Preference Analysis
(A) Example objects of small and big real-world sizes. Note that all images were presented at the same retinal size. The stimulus set contained 200 small and 200

big objects.

(B) Size-preferencemaps in the group data. Voxels with a greater response to small objects than big objects are shown in orange; Voxels with a greater response

to big objects than small object are shown in blue. The data are plotted on the inflated brain of one participant. There is a medial-to-lateral arrangement of big-

to-small object preferences along the ventral surface.

(C) Size-preference maps for four example subjects.

See also Figure S1.
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Procedures), and these are shown on an inflated cortical surface
in Figure 1. We observed a striking large-scale organization
along the ventral surface, evident at the group level and at the
single-subject level, with big and small object preferences
arranged in a medial to lateral organization across both hemi-
spheres. Further, this organization was mirrored along the lateral
surface of the cortex, with small to big object preferences
arranged from inferior to superior (Figures 1B and 1C).

Importantly, these data should not be interpreted as evidence
that big and small objects are represented in separate swaths of
cortex. Both big and small objects activate most of this object-
responsive cortex to varying degrees, illustrated in Figures 2,
consistent with accounts of distributed activation profiles of
these objects (e.g., Haxby et al., 2001). However, voxels with
a big-object preference are consistently found along medial
ventral temporal cortex, while voxels with a small-object prefer-
ence were consistently found along lateral temporal cortex
(Figures 2C and 2D).

Whole-Brain Contrasts
In a second analysis, we conducted a whole-brain random-
effects analysis to identify any contiguous regions with a reliable
preference for small objects or for big objects (p < 0.001, cluster
threshold > 10 mm3). Along the ventral surface of the brain,
a bilateral region of the parahippocampal gyrus was significantly
more active to big than to small objects (henceforth labeled as
‘‘Big-PHC’’), while a left-lateralized region in the occipitotempo-
ral sulcus extending into the inferior temporal gyrus was more
active to small relative to big objects (henceforth ‘‘Small-
OTS’’). Along the lateral surface, a more posterior small-prefer-
ence region was observed (‘‘Small-LO’’ for lateral occipital),
with a big-preference region in the right transverse occipital
sulcus (‘‘Big-TOS’’; Figure 3).

These regions of interest were also observed reliably in single
subjects (Figures 3B and 3C), even with only one run of <10 min
of scanning. A left Small-OTS region was present in 9 of 12
participants (bilateral in 1), a left Small-LO region was present
in all 12 participants (bilateral in half the participants), and

a Big-PHC region was present in 10 of 12 participants (bilateral
in all participants). The Big-TOS region was less reliably ob-
served at the single-subject level with a more variable position
across subjects, and it was thus not included for further analysis.
These results show that big/small object selectivity is more reli-
able in the left hemisphere, particularly for the Small-OTS and
Small-LO regions; an asymmetry opposite that of face-selective
regions which show stronger representation in the right hemi-
sphere (Kanwisher et al., 1997).
Comparing these ROIs with the size-preference analysis, it

is clear that these regions are not discrete regions of selectivity
among a heterogeneous mix of big and small object preferences
in the surrounding cortex. Instead, these regions-of-interest
reflect the peaks of significant differential activity in an otherwise

Figure 2. Single Subject Example
Responses in left ventral temporal cortex of an example subject, reflecting (1)

small objects > rest, T > 2.0, (2) big objects > rest, T > 2.0, (3) the size-

preference map masked by these small or big object-responsive voxels, and

(4) the regions of significant differential selectivity for small versus big objects

resulting from a whole-brain contrast, FDR < 0.05. See also Figure S2.

Figure 3. Whole-Brain Analysis
(A) Whole-brain contrasts of small versus big objects. Results of a random-

effects analysis, small > big contrast, (n = 12, p < 0.002, cluster threshold = 10),

plotted on the brain of one sample subject (sagittal section, x = !42, coronal

section, y = !42). The bilateral region with preference for big objects on the

ventral surface is shown (Big-PHC). Two small-preference regions were found,

one ventral/anterior (Small-OTS) and one lateral/posterior (Small-LO).

(B) These regions of interest are shown for 4 participants. (C) Table indicating

the regions identified from the group random effects analysis. Each region’s

anatomical location and label are indicated, followed by the number of

subjects (n) who showed this region of interest in a single-subject analysis. For

each region, the Talairach coordinates of the voxel with the peak t-value

(small > big contrast) are reported.

See also Figure S3 and Table S1.
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large-scale organization of big and small object preferences
across this cortex. From these data, we do not mean to imply
that these entire sections of cortex are devoted solely to repre-
senting big objects or small objects. Rather, whatever underlying
code is being used to represent object information across this
cortex, big and small objects differ strongly in some regions,
and the transitions between these regions are more smooth
than modular.

Effect Size Estimates
In Experiment 1a, observers were presented with one run of big
and small objects. In order to estimate the effect sizewithin these
regions, 8 newparticipants were shown two runs of big and small
objects in Experiment 1b. Regions of interest were estimated
from the first run for each subject and themagnitude of activation
to big and small objects was computed in these regions using
data from the second run. All 8 participants showed a Small-
OTS region on the left (bilateral in 3) and a Small-LO region (bilat-
eral in all 8), and 7 of 8 showed a Big-PHC region on the left (bilat-
eral in 6 of 8). These regions showed differential responses that
were 1.5 to 1.7 times higher for objects of the preferred size rela-
tive to objects of the non-preferred size (Figure S3; Table S1; see
also Figure 4), close to the effect sizes found in category-selec-
tive regions such as the FFA and EBA (Kanwisher, 2010).
Mapping out the size-preferences in object-responsive areas in
Experiment 1b also confirmed that these regions were peaks
of selectivity in a broader map of object size preferences (see
Figure S2 for ventral and dorsal maps from both experiments).
These results provide an internal replication of Experiment 1a,

and demonstrate that within these regions, there is a very large
and robust effect of big versus small objects.
While most real-world objects activate nearly the entire ventral

surface of cortex significantly more than a fixation baseline, our
data indicate that the medial surface has reliably more activity to
big objects while the lateral surface has reliably more activity
to small objects. Importantly, the pattern-map and whole-brain
analyses localize where big and small object information is
processed, but they do not inform us about what properties of
big and small objects drive the responses. There are a number
of factors differentiating big and small objects, and this is true
of the difference between faces, bodies, and scenes as well—
e.g., in their shapes, in the processing demands, and in more
abstract conceptual features regarding their use, importance,
or natural kind. In the next experiments, we used a region-of-
interest approach to examine the nature of the object represen-
tations. Specifically, we examined retinal-size tolerance and
activation during mental imagery, and we examined the possi-
bility that these regions are related to an abstract concept of
size. For all subsequent experiments, the big versus small object
paradigm from Experiment 1 was used as a localizer to indepen-
dently define regions of interest in each participant that showed
a significant difference between small and big objects response
(Small-OTS, Small-LO, Big-PHC). While a clear answer to
exactly what the big and small object regions and the cate-
gory-selective regions are representing remains unsolved (e.g.,
Kourtzi and Connor, 2011; Ungerleider and Bell, 2011), these
experiments probe the classic signatures of high-level object
representation, serve as important controls, and take initial

Figure 4. Retinal Size Manipulation Results
(A) Objects of small and big real-world sizes were presented at small and big retinal sizes on the screen.

(B) Activations in independently-localized Big-PHC, Small-OTS, and Small-LO, and anatomically defined early visual cortex regions (Calcarine) were measured

with ROI GLMs and the beta weights for the four conditions are plotted for the left hemisphere ROIs. Error bars reflect ± 1 SEM. The Big-PHC region showed

effects of both the real-world and the retinal size, while the small regions showed only preference for the real-world of objects with no modulation to retinal size.

The early visual control region showed modulation by retinal size, with no effect of real-world size.

See also Table S2.
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steps toward understanding the nature of the representation
in this cortex.

Tolerance to Retinal Size Changes
Ventral temporal cortex has object-selective responses that are
tolerant to changes in retinal size, position, and viewpoint—
a hallmark of high-level object representations (DiCarlo and
Cox, 2007; Grill-Spector et al., 1999; Sawamura et al., 2005;
Vuilleumier et al., 2002). In Experiment 2, we manipulated the
retinal size at which the objects were presented, to examine
the response contributions of retinal size and real-world size in
these regions.

All of the regions showed more activity to objects of the
preferred real-world size independent of retinal size, plotted
in Figure 4 (main effect of real-world size: Small-OTS-L:
F(1,23) = 85.8, p < 0.001; Small-LO-L: F(1,31) = 317.7,
p < 0.001; Small-LO-R: F(1,15) = 57.9, p < 0.01; Big-PHC-L:
F(1,23) = 51.5, p = 0.001; Big-PHC-R: F(1,23) = 70.3,
p < 0.001; no interactions between retinal and real-world size
in any of the regions: Small-OTS-L, Small-LO-L, Small-LO-R:
all Fs < 1; Big-PHC-L: F(1,23) = 2.3, p = 0.19; Big-PHC-R:
F(1,23) = 3.8, p = 0.11). As a control region, we examined the
response in an anatomically-defined region of early visual cortex
along the calcarine sulcus. As expected, there was more activity
for retinally larger images than retinally smaller images, with no
effects of real-world size (calcarine: retinal size: F(1,27) = 22.8,
p = 0.003; real-world size: F(1,27) = 2.5, p = 0.16).

In the Big-PHC region, there was also a main effect of retinal
size, with a stronger response to stimuli presented at retinally
large compared to retinally small sizes (main effect of retinal
size: Big-PHC-L: F(1,27) = 14.8,p = 0.012; Big-PHC-R:
F(1,23) = 24.4, p = 0.004; no effect in Small-OTS-L: F < 1;
Small-LO-L: F(1,31) = 5.0, p = 0.06; Small-LO-R: F(1,15) = 1.3,
p = 0.33). Thus, the Big-PHC region shows higher response
with more peripheral stimulation, for both big and small real-
world objects. These results are consistent with other reports
of peripheral biases along the collateral sulcus and parahippo-
campal regions (e.g., Levy et al., 2001; Levy et al., 2004; Arcaro
et al., 2009). These results imply that, in this cortex, the features
represented are not fully scale-invariant but are also enhanced
by general peripheral input.

Critically, the results of Experiment 2 demonstrate that both
big and small regions maintained their real-world size selectivity
over changes in retinal size—a manipulation that varies the
features presented to early areas. Thus, any uneven feature
distribution stimulating early foveal versus peripheral visual
cortex cannot explain away the activity in the big and small
object regions. The overall pattern of results here is consistent
with previous characterizations of ventral temporal cortex as
‘‘high-level object cortex’’: what seems to be processed or
computed here is strongly related to object-centered informa-
tion, above and beyond the retinotopic biases in these regions
(DiCarlo and Cox, 2007; Grill-Spector et al., 1999; Sawamura
et al., 2005; Vuilleumier et al., 2002).

Mental Imagery: Object Identity versus Conceived Size
One potential interpretation of the big and small regions is that
the magnitude of activity in these regions is related to the size

the observer thinks the object is in the world. On a pure
conceived-size account of these regions, the bigger one
conceives of an object, the more the object will drive activity in
the big region and the less it will drive activity in the small regions,
independent of the object’s identity (e.g., see Cate et al., 2011).
One method to dissociate an object’s identity from its real-world
size is to use mental imagery processes, where it is possible
imagine a tiny piano that is the size of a matchbox or a giant
peach that is the size of a car. A tiny piano thus becomes
a hand-held object; a giant peach becomes a large object or
landmark we can move around. In Experiment 3, we examined
whether these regions are tied to the object category or whether
the response reflects a more abstract concept of conceived size
using a mental imagery task.
Names of objects were presented aurally to a new set of

observers, whose task was to form a mental image of each
object. In half of the blocks, observers were told to imagine
isolated objects at their typical size when they heard the object
names (e.g., peach, piano). In the other half of the blocks, they
were told to imagine an isolated object at an atypical size: specif-
ically, they heard the adjective ‘‘tiny’’ for big objects and ‘‘giant’’
for small objects: e.g., ‘‘tiny piano,’’ imagined with the size of
matchbox, or ‘‘giant peach,’’ imagined with the size of car (see
Experimental Procedures). Afterwards they were presented
with small and big objects visually (as in Experiment 1), to
independently localize the big and small regions of interest in
each subject.
When participants imagined big and small objects at their

typical sizes, the big and small regions showed more activity to
objects with the preferred real-world size (Figure 5; Small-
OTS-L: t(7) = 2.4, p = 0.048; Small-LO-L marginal: t(7) = 1.8,
p = 0.107; Small-LO-R marginal: t(6) = 2.1, p = 0.083; Big-
PHC-L: t(6) = 4.0, p = 0.007; Big-PHC-R: t(7) = 3.2, p = 0.015).
These results are consistent with the fundamental and general
finding that neural responses in object-selective cortex are
similar between perception and imagery (O’Craven and Kanw-
isher, 2000; Reddy et al., 2010; Stokes et al., 2009). Further,
these results also demonstrate that our previous results were
not driven by pictoral artifacts of the stimuli: here, any perceptual
features instantiated via imagery processes aremeaningfully tied
to object concepts and are not driven by unintentional feed-
forward stimulus artifacts.
When observers imagined big and small objects in the atyp-

ical-size conditions, the big and small regions did not reflect
the conceived size of the object. That is, imagining a giant peach
still activated the small-preference regions more than imagining
a tiny piano (see Figure 4; Small-OTS-L: t(7) = 2.6, p = 0.036;
Small-LO-L: t(7) = 2.4, p = 0.048; though not significantly in the
right hemisphere Small-LO-R region: t(6) = 0.8, p = 0.45;
Big-PHC-L and Big-PHC-R trending: both t(7) = 1.7, p = 0.13;
see Table S2 for 2 3 2 ANOVA statistics). These results demon-
strate that activity in these big and small regions does not reflect
the conceived size of the imagined object—these regions are not
reflecting an abstract sense of real-world size independent of the
object identity. Instead, the data imply that these regions of
cortex represent information that does not change when an
object is imagined at a tiny or giant real-world size, such as the
category or the visual form of the object. As an analogy, in V1
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there is a large-scale map of eccentricity, but what is repre-
sented is not eccentricity per se but the orientation and spatial
frequency of visual information at that particular eccentricity.
Similarly, in these big and small object regions, what is repre-
sented is not an abstract sense of real-world size per se, but
something specific about the objects that have that particular
size in the world.
The Big-PHC region had a less pronounced preference for big

relative to small objects when those objects were imagined at
atypical sizes (marginally significant interaction: Big-PHC-L:
F(1,27) = 5.9, p = 0.051; Big-PHC-R: F(1,31) = 5.4, p = 0.053).
This result suggests that activity in this region may in part reflect
the physical size an observer imagines the object to be (e.g., see
Cate et al., 2011). However, a potentially more parsimonious
account of these data is that this modulation in the big region
is driven by its peripheral preference, as observed in the retinal
size manipulation experiment (Figure 4). If observers were imag-
ining giant peaches at a large retinal size and tiny pianos at
a small retinal size, and the imagined retinal size affects the
spatial extent of activation in early visual areas, then this would
give rise to the results observed in the Big-PHC region. Consis-
tent with this interpretation, the small regions did not have any
strong modulations by retinal size, and did not show an interac-
tion in the atypical size conditions. While there was no reliable
modulations in early visual cortex above baseline in these data
(Table S2), previous research supports this interpretation: bigger
real-world objects are imagined at bigger retinal sizes (Konkle
and Oliva, 2011), and imagining objects at bigger retinal sizes
has been shown to drive more peripheral retinotopic responses
in early visual areas when measured against a listening baseline
(Kosslyn et al., 1995).

DISCUSSION

Most categories of objects do not have a spatially contiguous
and highly selective cortical representation, but instead activate

a swath of ventral and lateral temporal cortex to varying degrees
(Carlson et al., 2003; Cox and Savoy, 2003; Haxby et al., 2001;
Norman et al., 2006; O’Toole et al., 2005). Here, we show that
within this cortex there are large-scale differential responses to
big and small real-world objects. Big versus small object prefer-
ences are arranged in a medial-to-lateral organization in ventral
temporal cortex in both the left and right hemispheres, and this
is mirrored along the lateral surface. Within this large-scale orga-
nization, several regions show strong differential activity that
survive strict whole-brain contrasts, both at the single subject
level and at the group level. A bilateral region in the parahippo-
campal gyrus was preferentially active to big versus small
objects (Big-PHC), while an adjacent region in left occipital
temporal sulcus was more active to small versus big objects
(Small-OTS), with an additional small-preference region in
more posterior lateral occipital cortex (Small-LO). While both
big and small objects drove these regions above baseline, the
differential activity between objects of different sizes was on
the order of 1.5-1.7 times greater for objects of the preferred
real-world size.
Using a region-of-interest approach, we probed the nature of

the object information in these regions in subsequent experi-
ments. We observed that (1) object responses in these regions
maintain their real-world size preferences over changes in retinal
size, indicating that these preferences are largely object-based
rather than retinotopic; (2) these regions are activated during
visual imagery, suggesting they reflect the site of stored visual
knowledge about these objects; (3) these regions are not driven
by whether an object is conceived of as big or small in the world,
indicating that these regions are not representing an abstract
concept of real-world size. Thus the real-world size preference
cannot be explained by a purely low-level (retinotopic) effect,
nor by a purely high-level (conceptual) effect. Instead, our data
indicate that the size preferences across ventral cortex arise
from information about the object category or visual form and
reflect features common among small and among big objects.

Figure 5. Mental Imagery Results
Activations in independently-localized Big-PHC, Small-OTS, and Small-LO regions in left hemisphere are shown. Orange bars show data for imagined objects

with a small real-world size (e.g., strawberries) and blue bars show data for imagined objects with a big real-world size (e.g., pianos). Bars with saturated colors

reflect conditions where observers imagined typically sized objects. Bars with unsaturated colors reflect conditions where the objects were imagined at atypical

sizes. Error bars reflect ± 1 SEM. See also Table S3.
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Broadly, these data demonstrate that the real-world size of
objects can provide insight into the spatial topography of object
representations which do not have a focal category-selective
response.

Relationship to Surrounding Characterized Regions
Where are the big and small object regions with respect to other
well-characterized object and scene regions? Figure 6 shows
the big and small object regions overlaid with face-selective,
scene-selective, and general shape-selective regions, as well
as inner, middle, and outer eccentricity bands (see also Table
S3 and Supplemental Experimental Procedures).

Along the ventral surface Big-PHC is partially overlapped with
parahippocampal place area (PPA: scenes > objects; Epstein
and Kanwisher, 1998), while to our knowledge the Small-OTS
region is a relatively uncharted region of cortex that is not
overlapping with any other well-characterized regions. The fusi-
form face area (FFA: faces > objects), fusiform body area (FBA:
bodies > objects), and posterior fusiform object region (pFS:
objects > scrambled) fall in between the Big-PHC and Small-
OTS regions, and are located along the fusiform gyrus (Peelen
and Downing, 2005; Schwarzlose et al., 2008). Note that both
big and small objects activate the fusiform cortex as well (Fig-
ure 2), but show the strongest differential response in more
medial and more lateral cortex.

While the scene-selective PPA region is typically localized as
scenes > objects (Epstein and Kanwisher, 1998), PPA is known
to have a reliable above-baseline response to objects, particu-
larly large objects such as buildings and landmarks (Aguirre
et al., 1998; Diana et al., 2008; Downing et al., 2006; Epstein,
2005; Litman et al., 2009; Mullally and Maguire, 2011), and
strongly contextual objects (Bar, 2004). Interestingly, strongly

contextual objects tend to be larger than non-contextual objects
(Mullally and Maguire, 2011). Recently this scene area was
shown to respond systematically to imagined objects that define
a space (Mullally and Maguire, 2011). Relevant to the current
results, in their factor analysis of different object properties,
Mullally and Maguire (2011) found that an object’s size was
highly correlated with its space-defining properties, and this
dimension explained a similar amount of response variance in
the PPA. Mullally and Maguire (2011) did not explore the role of
real-world size outside of the PPA, so their work does not speak
directly to the role of real-world size as a general organizational
dimension of object-selective cortex. Nevertheless, given the
proximity of the Big-PHC region to the PPA, their results are
nicely convergent and consistent with the results found here
regarding the response profile of medial ventral cortex to large
objects, and suggest that the object information in this region
may be related to some spatial properties of objects (e.g.,
spaces/shapes for the body).
Along the lateral surface, Small-LO is just anterior to functional

area LOC, localized as objects > scrambled (Grill-Spector et al.,
1999), while Big-TOS is nearby scene-selective area TOS
(Epstein et al., 2005; Hasson et al., 2003). The lateral occipital
cortex contains many nearby and partially-overlapped regions,
such as the extrastriate body region EBA, motion area MT, the
medial temporal gyrus tool region MGT-TA (Beauchamp et al.,
2002; Chao et al., 1999; Downing et al., 2001; Valyear and
Culham, 2010). The convergence of these regions also suggests
that some abstract spatial property of objects may be repre-
sented in these regions (e.g., spaces/shapes for the hands).
Previous studies characterizing category-selective regions

along the ventral and lateral surface of visual cortex have found
that these regions come in pairs, e.g., faces: fusiform and

Figure 6. Relationship of These Regions to Eccentricity Bands and to Other Well-Characterized Regions
Left: Group size-preference maps, with the big and small regions of peak selectivity shown from a single representative subject. Right: Functionally-localized

regions from the same single subject shown. Inner, middle, and outer eccentricity rings are shown in light, medium, and dark blue, respectively. LOC and pFS

(objects > scrambled) are shown in yellow. FFA (faces > objects) is shown in pink; this participant did not have anOFA region. PPA and TOS (scenes > objects) are

shown in green. The Small-OTS and Small-LO regions are shown in orange and the Big-PHC and Big-TOS regions are shown in blue, also indicated with white

arrows.
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occipital face area FFA/OFA; bodies: fusiform and extrastriate
body area FBA/EBA; general shape-selectivity: posterior fusi-
form and lateral occipital complex, pFS/LOC; and scenes: para-
hippocampal place area and transverse occipital sulcus, PPA/
TOS (Schwarzlose et al., 2008; Taylor and Downing, 2011). Has-
son et al. (2003) demonstrated that these regions are arranged in
a ‘‘mirrored’’ fashion from medial-ventral regions wrapping
around the lateral surface to medial-dorsal regions. Previous
work has found that regions along the ventral surface have
more overall visual form information while those along the lateral
surface have more location-, motion-, and local-shape informa-
tion (Beauchamp et al., 2002; Drucker and Aguirre, 2009;
Haushofer et al., 2008; Schwarzlose et al., 2008). Consistent
with this overall pattern, Small-OTS and Small-LO are paired
small regions that also fall along the ventral and lateral surfaces,
respectively; Big-PHC may also be paired with Big-TOS but
Big-TOS was less reliably observed here and warrants further
study. Given this duplication of object representations along
the ventral and lateral surface, the different response properties
discovered for lateral and ventral category-selective regions in
general may also apply to Big-PHC, Small-OTS, and Small-LO.

Relationship to Extended Retinotopy
Object-responsive cortex anterior to early visual areas was orig-
inally thought to be nonretinotopic; however, there are nowmany
well-documented retinotopic maps extending along dorsal and
ventral streams (e.g., for reviews, see Wandell et al., 2007; Silver
and Kastner, 2009). Comparing object responses with retino-
topic organization in this cortex may prove to be valuable for
understanding the consistent spatial arrangement of category-
selective regions (e.g., Levy et al., 2001; Malach et al., 2002;
Hasson et al., 2002, 2003; Sayres and Grill-Spector, 2008), as
well as the big/small object regions. Here we discuss how the
big and small object responses relate to the retinotopic biases
in occipitotemporal cortex.
Themedial ventral surface has peripheral field biases while the

lateral temporal surface has central field biases, which extend
directly from early visual areas V1-V4 (Levy et al., 2001; Malach
et al., 2002; Hasson et al., 2003; but see Brewer et al., 2005;
Arcaro et al., 2009, which suggest that there are separate foveal
representations in these regions). Face- and scene-selective
areas are found in cortex with foveal and peripheral biases,
respectively (e.g., Levy et al., 2001; Hasson et al., 2002). Simi-
larly, given the positions of the big/small object regions relative
to the scene/face regions, there is a striking convergence
between big and small object information and the eccentricity
biases of high-level object areas. For example, Figure 6
illustrates that Big-PHC region is near to peripheral early visual
cortex, while the Small-OTS and Small-LO preferences are
closer to foveal early visual cortex, and both organizations are
mirrored along the lateral surface. This convergence raises the
possibility that big/small preferences may derive in part from
eccentricity biases.
In their eccentricity-bias proposal of the organization of object

representation, Malach and colleagues proposed a processing-
based organization of cortex, positing that areas with foveal or
peripheral biases carry out fine-detailed or integrative process-
ing, respectively. On this account, any object will be represented

along this cortex based on its processing-resolution needs (e.g.,
Malach et al., 2002). This account has met with some criticisms,
however, as the concept of processing-resolution was not
clearly operationalized (see also Tyler et al., 2005). For example,
it is not obvious that faces require fine-detail processing and not
integrative processing. Further, this proposal does not easily
lead to predictions about the location of other objects until it is
first determined what kind of processing resolution they require
(e.g., what are the processing demands of a strawberry or
a chair?). As such, their proposal does not easily predict or
account for the big-small organization of this cortex. However,
in the following section we suggest an alternative account of
the object-size organization which shares a fundamental
premise of the eccentricity-bias proposal, namely that there is
a meaningful relationship between the organization of visual
object responses and the large-scale eccentricity organization
of early visual areas.

Implications for the Spatial Topography of Object
Representation
How might object representations come to be differentiated by
real-world size in this object-responsive cortex? Here, we
propose a possible account of how this organization emerged
from a combination of size-dependent biases in perceptual
input, and size-dependent biases in functional requirements for
action. Our proposal derives from two core ideas regarding the
goals of the visual system: (1) to efficiently represent systematic
biases in the sensory input (e.g., along shape, retinal size, curva-
ture, etc, e.g., Attneave, 1954; Carlson et al., 2011; Field, 1987),
and (2) to facilitate action in the natural environment (Gibson,
1979; e.g., computing what effectors you use to interact with
an object). Our account describes how these convergent pres-
sures could give rise to object representations organized by
real-world size in occipitotemporal cortex. Although this account
is speculative and will require future work for direct supporting
evidence, it nevertheless it provides a principled framework
with testable predictions to guide future research.
For observers in the world, there are certain geometric

constraints that we suggest give rise to a systematic covariance
between an object’s real-world size, shape, and experienced
eccentricity. For example, although an observer can stand at
any distance from an object, allowing the object to project to
any retinal size, some distances of interaction may be more
frequent than others. A car at a typical viewing distance of 30
feet subtends a visual angle of "30 degrees, whereas a raisin
held at an arm’s length subtends a much smaller visual angle
of"1 degree, and would nearly have to touch the eye to subtend
a visual angle of 30 degrees. Thus, over the course of natural
viewing experience, in the lifetime or over evolutionary time,
larger objects may tend to extendmore peripherally on the retina
than smaller objects (see also Konkle and Oliva, 2011). Addition-
ally, we suggest that shape may be intrinsically correlated with
object size based on gravitational and physical constraints of
the world—e.g. smaller objects tend to be rounder and larger
objects tend to be boxier (Konkle, 2011). These shape
constraints manifest as systematic biases in low-level shape
features such as curvature and spatial frequency content stimu-
lating early visual areas. Based on the prominent framework
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that the visual system is tuned to the natural statistics of the
world (e.g., Simoncelli and Olshausen, 2001), early processing
stages along the visual hierarchy may extract these low-level
feature covariances in orientation, curvature, and eccentricity
(e.g., Carlson et al., 2011). Due to the large-scale organization
of eccentricity in early visual cortex, this could give rise to
pre-cursor object representations that are naturally arrayed
along the cortical sheet by real-world size. Consequently an
object’s real-world size would predict the location of its peak
representation.

A prominent alternative account for the large-scale spatial
organization of object information is the connectivity-hypothesis
proposed by Mahon and Caramazza, which argues that object
representation is driven by long-range network connectivity
(Mahon and Caramazza, 2011; Mahon et al., 2007). On this
account, manipulable objects like tools require different ‘‘down-
stream’’ action requirements than animate objects like animals,
and this determines the organization of ventral stream represen-
tations. Interestingly, the real-world size of objects naturally
constrains the kinds of actions and effectors that will be used
when an observer interacts with an object (e.g., with the fingers,
hands, arms, or full body). By incorporating the notion of real-
world size into action requirements, it may be possible to extend
their proposal beyond animals and tools to the large range
of other biological and manmade artifacts. Thus, real-world
object size may not only be related to the eccentricity and
shape features of objects, but may also be a natural proxy for
different classes of action and interaction types, as reflected
in ventral-dorsal connectivity. While the eccentricity-bias and
connectivity-driven hypothesis have often been discussed as
competing alternatives, our real-world size account may unify
these proposals, as here we propose both bottom-up experi-
ence-driven learning and top-down requirements for action
provide convergent pressures for object knowledge to be topo-
graphically organized by real-world size.

EXPERIMENTAL PROCEDURES

Participants
Twenty-two healthy observers with normal or corrected-to-normal vision

participated in one or more of the experiments in a 2 hr fMRI session

(age 19–36, 13 female, 21 right-handed). Informed consent was obtained

according to procedures approved by the MIT Internal Review Board.

MRI Acquisition
Imaging data were collected on a 3T Siemens fMRI Scanner at the Martinos

Center at the McGovern Institute for Brain Research at MIT. Experiments 1

and 2 used a 12-channel phased-array head coil and Experiment 3 used

a 32-channel phased-array head coil. Blood oxygenation level-dependent

(BOLD) contrast was obtained with a gradient echo-planar T2* sequence

(33 oblique axial slices acquired parallel to the anterior commissure-posterior

commissure line; 64 3 64 matrix; FoV = 256 3 256 mm; 3.1 3 3.1 3 3.1 mm

voxel resolution; Gap thickness = 0.62 mm; TR = 2000 ms; TE = 30 ms;

flip angle = 90 degrees).

Experiment 1a and 1b: Big and Small Objects
In Experiment 1a, 12 observers completed one run of this experiment. In

Experiment 1b, 8 new observers completed two runs of this experiment.

Observers were shown images of big real-world objects and small real-world

objects in a standard blocked design. All objects were shown at the same

visual angle (9 3 9 degrees). Each block was 16 s during which 20 images

were shown per block for 500 ms each with a 300 ms blank following each

item. Fixation periods of 10 s intervened between each stimulus block. Ten

blocks per condition were shown in a single run of 8.8 min (265 volumes). A

total of 200 big and 200 small distinct object images were presented.

Observers were instructed to pay attention to the objects and to press a button

when a red frame appeared around an item, which happened once per block.

Regions defined from contrasting small and big objects were used as ROIs in

subsequent experiments.

Experiment 2: Retinal Size Manipulation
Eight observers were shown blocks of big and small objects at big and

small retinal sizes. The big and small objects stimuli were the same as in

Experiment 1, and the retinal sizes were 11 3 11 degrees visual angle and

4 3 4 degrees visual angle for the big and small visual sizes, respectively.

The blocked design and stimuli were the same as in Experiment 1: each block

was 16 s during which 20 images were shown for 500 ms each with a 300 ms

blank following each item. Blocks were separated by fixation periods of 10 s.

There were four conditions (2 real-world sizes 3 2 retinal sizes), presented in

a pseudorandom order, such that all conditions appeared in a shuffled order

5 times per run (8.8 min, 265 volumes). Two runs were conducted in this exper-

iment, yielding 10 blocks per condition. Observers were instructed to pay

attention to the objects and to press a button when a red frame appeared

around an item, which happened once per block.

Experiment 3: Mental Imagery
The names of different objects were presented aurally to 8 naive observers,

and observers were instructed form amental image of each object. Observer’s

eyes were closed for the entire duration of each run. In 16 s blocks, observers

heard 5 object names (3.2 s per object), followed by the word ‘‘blank’’ signi-

fying the beginning of each 10 s blank interval. Runs always began with

a 10 s blank interval. In the typical size conditions, blocks of small object

names (e.g., peach) and big object names (e.g., lawn chair) were presented.

In the atypical size conditions, observers imagined these small objects at giant

sizes (e.g., hearing the words ‘‘giant peach’’) and the big objects at tiny sizes

(e.g., hearing the words ‘‘tiny lawn chair’’). There were 30 small objects and

30 big objects, divided into two sets. Each run used the stimuli from one set

and contained 3 blocks of each condition, lasting for 5.4 min (161 volumes).

Six runs were conducted in the experiment, three for each object set, yielding

12 total blocks per condition. All imagery runs were conducted first, prior to the

presentation of any experiments with visual stimuli, including the Big versus

Small Object localizer.

Sounds were presented through Sensimetric MRI Compatible Insert

Earphones (www.sens.com/s14/index.htm). To set the volume levels in the

scanner, a functional run was started and the volume of the stimuli was slowly

increased until the participant pressed a button indicating they could hear the

stimuli clearly.

Before the experiment, observers were given detailed instructions that they

should imagine only isolated objects, and that ‘‘giant’’ versions of small objects

should be imagined ‘‘as having the same size as a car or piano’’ while tiny

versions of large objects should be imagined ‘‘as having the same size as

a matchbox or something that could fit in your hand.’’ Observers then were

given a short practice run outside the scanner in which they heard the names

of small objects, big objects, tiny versions of big objects, and giant versions of

small objects, following the same timing as in the experimental runs. None of

these practice object stimuli were used in the main experiment.

Data Analysis
Functional data were preprocessed using Brain Voyager QX software (Brain

Innovation, Maastricht, Netherlands). Preprocessing included slice scan-

time correction, 3D motion correction, linear trend removal, temporal high-

pass filtering (0.01 Hz cutoff), spatial smoothing (4 mm FWHM kernel), and

transformation into Talairach coordinates. For the ROI overlap computations,

analyses were performed on unsmoothed functional data in ACPC space (no

Talairach transform).

Statistical analyses were based on the general linear model. All GLM anal-

yses included regressors for each experimental condition, defined as

square-wave regressors for each stimulus presentation time convolved with
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a gamma-function to approximate the idealized hemodynamic response. A

whole-brain, random-effects group average analysis was conducted on data

from the Big versus Small Object Experiment (E1). A contrast was performed

at an uncorrected threshold of p < 0.001 (with an additional cluster threshold

of 10 mm3 applied) to test for regions more active to small versus big objects

and vice-versa.

To obtain size-preference maps for each subject, an object-responsive

mask was computed by taking all voxels posterior to Y = !19 (to isolate the

occipital-temporal lobes) that were active in either the Small > Rest or the

Big > Rest contrast at T > 2.0. The preference map shows the t values of the

small object versus big object contrast, within this object-responsive mask.

To compute the group size-preference map, the time series of each subject

was concatenated and a fixed-effects GLM analysis was run on the group

data (see Hasson et al., 2003; Levy et al., 2001), and the same procedure as

in the single subject case was subsequently followed.

To obtain regions-of-interest from the Big and Small Object experiment,

whole-brain GLMs were conducted for each individual. The Small-OTS and

Small-LO regions were defined from contrasts of Small > Big, and the Big-PHC

regions were defined from the opposite contrast of Big > Small. All ROIs were

taken from t maps corrected at FDR < 0.05, with a cluster threshold of 10 mm3

(10 contiguous voxels). In some cases, the FDR threshold was made more

conservative, e.g., when the Small-OTS and Small-LO regions, which each

have distinct peaks, were connected by voxels with lower t values. If any of

the targeted ROIs were not present at FDR < 0.05, the threshold was lowered

to FDR < 0.1. If no clear ROI was present at that threshold, then that ROI was

not defined for that participant. ROIs were defined as the set of contiguous

voxels that were significantly activated around the peak voxel identified from

within a restricted part of cortex based on the anatomical position.

For all ROI analyses, all ROIs were defined from the Big versus Small object

experiment (independent dataset), and the response of these regions to

different experimental conditions was assessed in subsequent experiments.

For each subject and each ROI, GLMs were run on the average time series

of the voxels in the ROI to obtain regression coefficients (betas) for the exper-

imental conditions. For the subsequent experiments with 2 3 2 designs

(Experiment 2: retinal size manipulation; Experiment 3: mental imagery), to

evaluate the effects of each factor across observers, repeated-measures

ANOVAs were run on the betas across observers for each ROI.
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Figure S1: related to Figure 1:  Big and Small object stimuli 
 

 
 
Figure S1. Stimulus set. Thumbnails of the 200 small and 200 big objects used in Experiment 1.  The 
stimulus set can be downloaded from the first author’s website.
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Figure S2:  related to Figure 1:  Dorsal and Ventral views of group preference maps 
 

 
 
Figure S2. Dorsal and ventral views of group preference maps.  The preference maps were computed 
from a fixed-effect group analysis, masked by voxels significantly more active for big or small objects 
versus rest.  Voxels with a preference for small objects are shown in orange and voxels with a 
preference for big objects are shown in blue. Left shows results for Experiment 1a (n=12) and right 
shows results for replication Experiment 1b (n=8). 
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Figure S3:  related to Figure 3:  Effect size in big and small preference regions 

 

 
 
Figure S3. Effect size in big and small preference regions. In Experiment 1b, we presented two runs of 
the big small object localizer to 8 new participants.  Regions of interest were defined from the first run 
of the big small object localizer, and the magnitude of response in each region was estimated using data 
from the second run of the same experiment.  Beta weights are shown for the big- and small-preference 
regions in the left-hemisphere. Error bars reflect ± 1 within-subject S.E.M. 
 
We additionally computed percent signal change in these regions by first removing the grand mean of 
the time course and then computing an ROI GLM, where the beta weights can now be interpreted as 
percent signal change. The effect size estimates of these regions did not change (mean percent signal 
change: Big-PHC-L: small objects 27%, big objects 47%; Big-PHC-R: Small objects 32%, big objects 56%; 
Small-LO-L: small objects 96%, big objects 66%; Small-LO-R: small objects 90%, big objects 68%; Small-
OTS-L: small objects 73%, big objects 48%).    
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Table S1:  related to Figure 3:  Effect Size estimates in big and small preference regions 
 
 

 Small Objects 
Mean Beta (sem) 

Big Objects 
Mean Beta (sem) 

Small Objects vs. 
Big Objects 

Non-preferred vs. 
Baseline 

BigPHC-L .71 (.23) 1.23 (.18) t(6)=3.54, p<0.05 t(6)=3.11, p<0.05 

BigPHC-R .73 (.19) 1.31 (.15) t(7)=4.46, p<0.005 t(7)=3.85, p<0.05 

Small-OTS-L 1.4 (.18) .89 (.11) t(6)=4.61, p<0.005 t(6)=7.83, p<0.001 

Small-LO-L 1.59 (.14) 1.06 (.14) t(7)=16.63, p<0.001 t(7)=7.57, p<0.001 

Small-LO-R 1.52 (.18) 1.13 (.16) t(6)=5.77, p<0.001 t(6)=7.15, p<0.001 

 
 
Table S1. Effect Size estimates in big and small preference regions. Average beta weights for big and 
small objects in independently localized big and small regions in the left hemisphere. Statistics are 
reported for t-tests compared the objects of the preferred size vs. non-preferred size, as well as the non-
preferred size relative to baseline.  Each region showed a reliable differential response to objects of big 
and small known sizes, while also showing an above-baseline response to objects with the non-preferred 
size.  
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Table S2:  related to Figure 4:  Mental Imagery Experiment Statistics 
  
 

 Big/Small Object 
Main effect 

Typical/Atypical size 
Main Effect 

Interaction 
 

Big-PHC-L F(1,27)=12.5, p=0.012 * F(1,27)=0.6, p=0.460 F(1,27)=5.9, p=0.051 ~ 

Big-PHC-R F(1,31)=8.9, p=0.020 * F(1,31)=0.0, p=0.977 F(1,31)=5.4, p=0.053 ~ 

Small-OTS-L F(1,31)=6.9, p=0.034 * F(1,31)=1.2, p=0.304 F(1,31)=0.7, p=0.421 

Small-LO-L F(1,31)=5.8, p=0.047 * F(1,31)=2.3, p=0.174 F(1,31)=0.0, p=0.978 

Small-LO-R F(1,27)=3.9, p=0.097 F(1,27)=0.1, p=0.805 F(1,27)=3.3, p=0.118 

EarlyV - Inner F(1,31)=1.0, p=0.340 F(1,31)=2.0, p=0.204 F(1,31)=1.3, p=0.287 

EarlyV - Middle F(1,31)=0.1, p=0.725 F(1,31)=0.1, p=0.738 F(1,31)=0.5, p=0.512 

EarlyV - Outer F(1,31)=0.2, p=0.679 F(1,31)=0.1, p=0.740 F(1,31)=0.5, p=0.508 

 
 
Table S2. Results of the 2x2 ANOVA for the mental imagery experiment. In Experiment 3, participants 
imagined big and small objects at normal and atypical sizes. The table shows the results of a 2x2 
repeated measures ANOVA on the beta weights for each ROI. All big and small object regions showed a 
main effect of the real-world size of the object, and no significant effect of typical/atypical size, with a 
marginal interaction in the Big-PHC region. Early visual cortex in inner, middle, and outer eccentricity 
bands were not modulated significantly above baseline and showed no differences in response across 
the imagery conditions.  
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Table S3:  related to Figure 5:  Reliability and Overlap of ROIs 
 
 
 

 B-PHC1 
B-PHC2 

PPA1 
PPA2 

B-PHC1 
PPA2 

PPA1  
B-PHC2 

 Sm-LO1 
Sm-LO2 

LOC1 
LOC2 

Sm-LO1 
LOC2 

LOC1 
Sm-LO2 

Sub1 0.91 0.81 0.21 0.01  0.95 0.87 0.52 0.80 

Sub2 - 0.98 - -  1.00 0.93 0.00 0.27 

Sub3 0.81 0.86 0.38 0.95  0.75 0.57 0.26 0.46 

Sub4 - 0.92 0.19 -  0.32 0.59 0.36 0.19 

Sub5 0.98 0.93 - 0.91  - 0.69 0.61 - 

Sub6 0.89 0.93 0.68 0.97  0.99 0.78 0.14 - 

Sub7 0.93 0.36 0.84 0.44  0.86 0.58 0.27 0.35 

Mean 0.90 0.83 0.46 0.66  0.81 0.72 0.31 0.41 

SEM 0.03 0.08 0.56 0.11  0.11 0.06 0.08 0.11 

 
 
Table S3: Reliability and Overlap of ROIs. Average % containment between a region with itself across 
runs and with the comparison region across runs. For example, B-PHC1 indicates the big-preference 
region  (big>small) defined from the first functional run; B-PHC2 indicates the big-preference region 
defined from the second functional run. Sm-LO1 and Sm-LO2 indicate the Small-LO region (small>big) 
defined in the first and second runs. The calculation procedure and summary of results is described in 
the Supplementary Experimental Procedures. 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Reliability and Overlap of ROIs 
 
The Small and Big ROIs showed proximity to and overlap with the well-known functionally localized 
regions of the lateral occipital complex (LOC: objects>scrambled) and the parahippocampal place area 
(PPA: scenes>objects). To characterize the overlap between these areas, we first gathered data from a 
new set of 7 observers on two runs of the Big and Small ROI localizer and two runs of a PPA and LOC 
localizer described below.  We then computed overlap between two ROIs, e.g. LOC and Small-LO, and 
compared it to the overlap of the ROI to itself across runs.  Overlap was characterized using a procedure 
modified from previous methods (Scholz et al., 2009).   
 
PPA and LOC were localized from a standard localizer experiment in which stimulus blocks of scenes, 
objects, faces, and scrambled objects were shown, with each block lasting 16s during which 20 images 
were shown for 500ms each with a 300 ms blank (images shown at 9x9 degrees visual angle).  Fixation 
periods of 10s preceded and followed each stimulus block. The conditions were presented in a 
pseudorandom order, such that all 4 conditions appeared in a shuffled order 4 times per run.  A run was 
7.1 min (213 volumes).  Observers were instructed to press a button when a red frame appeared around 
an item, which happened once per block.   
 
Overlap between two target regions was computed over a range of t-value thresholds then averaged 
over a range of t-values, allowing  for regions to be different sizes.  For any two regions being compared, 
the range of t-values started at the maximum t-value of the two region’s FDR<0.05 threshold, and 
increased by steps of 0.02 to the lowest of the two peak t-values.  Additionally, we required a minimum 
of 10 voxels and a maximum of 500 voxels from both ROIs at any given threshold. The analysis 
proceeded by getting the contiguous set of voxels around the peak voxel within an anatomically defined 
mask that were above the specific threshold. At each threshold, degree of overlap was quantified as the 
percent of voxels of the smaller region that were contained in the larger region, for left hemisphere ROIs 
only.  This measure can be conceptualized as what percent the smaller region is contained in the bigger 
region without relying on a specific arbitrary t-threshold. 
 
The overlap analysis showed that the LOC region across two runs was 72% (SEM=6%) contained with 
itself, and the Small-LO region was 81% contained with itself (SEM=11%). Given these numbers as 
reference of within-ROI reliability, the Small-LO was on average 35% contained in the LOC region 
(SEM=6%). Thus while there is some overlap between LOC and Small-LO, the regions which show a 
preference for small objects are not capturing the same region as is localized with objects>scrambled.   
 
The PPA region across two runs was 85% contained with itself (SEM=8%) and the Big region across two 
runs was 90% contained with itself (SEM = 3%).  Comparing these two regions together, the PPA and Big 
regions were on average 58% contained (SEM=11%) (See Supplementary Table 3).  On average there 
was relatively more overlap between PPA and Big regions then there was with LOC and Small-LO 
regions. 
 

Inverting the overlap measure: Computing Non-Overlap of ROIs 
 
Neither the Big-PHC and PPA regions, nor the Small-LO and LOC regions were fully overlapped. To 
estimate the percent of the region that was not overlapped, one can approximate this by subtracting 
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100% from the %-contained measure. However, this subtraction assumes that the regions being 
compared were roughly a similar number of voxels, which was not assumed by the %-containment 
measure.   
 
Thus we conducted an additional, targeted analysis, in which we computed the percent of the Big-PHC 
region that was not overlapping with the PPA. That is, are there voxels that show a big>small significant 
difference that do not

 

 show a significant scene>object difference? In this analysis, rather than flexibly 
using the region with the fewest number of voxels as the denominator of the percentage calculation, we 
used the number of voxels in the Big-PHC region as the denominator in the percentage calculation. We 
examined this directly by following the same procedure, but computing the percent of voxels in the Big-
PHC region not contained in the PPA. This yielded a 51% non-overlap (SEM 11%). In other words, 51% of 
the voxels with a significant Big>Small contrast did not also have a significant Scene>Object contrast at 
that threshold, averaged over a range of thresholds for each subject, and averaged across subjects. 

We conducted a similar analysis for the Small-LO and LOC regions. That is, are there voxels that show a 
significant small>big difference that do not

 

 show a significant object>scrambled difference? We  
followed the same procedure, and computed the average percent of voxels in the Small-LO region that 
were not contained in the LOC region, yielding 70% (SEM 7%).   

Note that these numbers are approximately equal to 100% - %contained measure (PPA/BigPHC: 100%-
58% = 42%; compared to 51%; LOC/SmallLO: 100%-35%=65%, compared to 70%).  These numbers would 
be exactly equal if the two regions were the same number of voxels at each statistical threshold, which 
was roughly true on average across subjects.  The value of the %-containment measure is that it allows 
for easy comparison with the within ROI reliability. 
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