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Understanding how perceptual and conceptual representations are connected is a fundamental goal of
cognitive science. Here, we focus on a broad conceptual distinction that constrains how we interact with
objects—real-world size. Although there appear to be clear perceptual correlates for basic-level categories
(apples look like other apples, oranges look like other oranges), the perceptual correlates of broader categorical
distinctions are largely unexplored, i.e., do small objects look like other small objects? Because there are many
kinds of small objects (e.g., cups, keys), there may be no reliable perceptual features that distinguish them from
big objects (e.g., cars, tables). Contrary to this intuition, we demonstrated that big and small objects have
reliable perceptual differences that can be extracted by early stages of visual processing. In a series of visual
search studies, participants found target objects faster when the distractor objects differed in real-world size.
These results held when we broadly sampled big and small objects, when we controlled for low-level features
and image statistics, and when we reduced objects to fexforms—unrecognizable textures that loosely preserve
an object’s form. However, this effect was absent when we used more basic textures. These results
demonstrate that big and small objects have reliably different mid-level perceptual features, and suggest that
early perceptual information about broad-category membership may influence downstream object perception,
recognition, and categorization processes.
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We can rapidly recognize an incredible number of different
objects, effortlessly connecting incoming visual input with high-
level conceptual representations, such as an object’s identity or
category (Grill-Spector & Kanwisher, 2005; Kirchner & Thorpe,
2006). Influential object recognition models posit that this feat is
accomplished by extracting a hierarchy of increasingly complex
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feature representations (e.g., Biederman, 1987; Riesenhuber &
Poggio, 1999; Krizhevsky, Sutskever, & Hinton, 2012). Later
stages of the hierarchy extract features that are tolerant to identity-
preserving transformations, such as changes in location, size, and
orientation (DiCarlo & Cox, 2007), thus enabling basic-level ob-
ject recognition.

Although much research on object recognition has focused on
basic-level categorization (e.g., “Is this an apple? Or a ham-
mer?”), less work has focused on how the visual system sup-
ports broad conceptual distinctions between objects (e.g., “Is
this alive? Is this a tool?”). Intuitively, objects from a particular
broad category, such as all manmade objects, come in so many
different shapes and sizes that there may be no consistent
perceptual features diagnostic of this broad category. Thus,
broad object category information might reside only in “seman-
tic” levels of representation.

Alternatively, there may be reliable mid-level perceptual (not
semantic) features that differentiate between broad classes of stim-
uli. Mid-level perceptual features include textural and shape infor-
mation that preserve local corners, junctions, and contours (e.g.,
Freeman & Simoncelli, 2011). These features occupy an interme-
diate status in the visual feature hierarchy, as they are more
complex than low-level features like contrast and spatial fre-
quency, but simpler than high-level features, which capture rec-
ognizable object parts or entire objects. As such, these features
have the potential to carry information about broad category mem-
bership.
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Here we focused on one particular broad category distinction,
real-world size, and asked if mid-level perceptual features carry
information about this distinction. The real-world size of objects has
been posited as a core feature of object representation (Konkle &
Oliva, 2011), as it constrains which object interactions are appropri-
ate, is automatically accessed during object recognition (Setti, Cara-
melli, & Borghi, 2009; Sereno, O’Donnell, & Sereno, 2009; Rubin-
sten & Henik, 2002; Konkle & Oliva, 2012a), and is an organizing
property of inanimate object responses in the ventral visual cortex
(Konkle & Oliva, 2012b; Konkle & Caramazza, 2013). Further, it has
been suggested that objects of different sizes may have different shape
and textural properties driven by ecological constraints (Haldane,
1928; Konkle & Oliva, 2012b). However, it is currently unknown
whether there are mid-level perceptual features that differentiate the
broad classes of big and small objects. If these features exist, they
would be useful for speeding basic-level categorization, and general-
izing properties to newly learned objects.

If big and small objects are distinguished by mid-level percep-
tual representations, then a given small object should appear more
similar to other small objects than big objects, and vice versa. To
explore this possibility, we used a visual search paradigm, as the
speed of search depends on how similar the target is to the
distractors (Duncan & Humphreys, 1989). Specifically, if big and
small objects are highly distinguishable in terms of features that
guide visual search, then it should be easier to find a small object
target among big objects than among other small objects. We
tested this possibility by comparing search efficiency between two
kinds of displays: mixed displays, in which targets and distractors
differed in real-world size, and uniform displays, in which targets
and distractors were of the same real-world size. Critically, in all
the displays, the items were presented at the same size on the
screen; our key manipulation only varied whether the depicted
objects were typically big or small in the world.

To explore the perceptual differences between big versus small
objects, we constructed four different stimulus sets. In Experiment
1, we widely sampled from the categories of big and small objects
to capture the natural variability in the world (Brunswik, 1955).
This experiment serves as an existence proof that there are features
that distinguish between the broad categories of big and small
objects. We replicated and extended this effect in the second study
with a smaller set of images, controlled for a wide range of
low-level features, such as aspect ratio, extent, and contour vari-
ance. In the critical third experiment, we created a “semantic
knockout” stimulus set using texturized stimuli that loosely pre-
serve an object’s form yet cannot be recognized at the basic-level
(texforms). Across all three experiments, we found that search was
more efficient when targets and distractors differed in real-world
size, even when the items themselves were unrecognizable. In the
final experiment, we reduced stimuli even further, preserving only
basic texture information, and we no longer found this gain in
search efficiency.

Together, these results demonstrate that big and small objects
differ in terms of mid-level perceptual features that observers can
use to guide their attention during visual search. We propose that
these features are extracted early in visual processing, prior to
object recognition, and therefore may be used to inform down-
stream recognition and categorization processes.

Experiment 1: Widely Sampled Stimuli

Here, we asked whether objects of the same real-world size are
more perceptually similar to each other than to objects of different
real-world sizes, even when all objects are presented at the same
physical size on the screen. We first tested a large stimulus set of
big and small objects to capture the natural variability in object
appearance across many real-world objects.

Method

Participants. Thirteen naive subjects (Harvard students or affil-
iates) participated. Power analyses on a pilot experiment (N = 8) with
a slightly different stimulus set and variant of the task indicated that
13 participants would allow detection of a similar-sized effect (75%
power, .05 a probability). All participants were 18 to 35 years old and
had normal or corrected-to-normal visual acuity.

Procedure. Participants performed a visual search task, in which
they searched for a target object among a set of distractors (see Figure
la). On each trial, the exact target stimulus was previewed and
presented centrally for 1000 ms. After 500 ms, a search display with
either 3 or 9 items was presented. The items were presented at the
same physical size on the screen (5.29° X 5.29°), and were randomly
positioned to fall within in a 3 X 4 grid with a =0.94 degree jitter. The
target was always present on the display, and the task was to locate the
target as quickly as possible. Participants pressed the space bar as
soon as they located the target, after which all items were replaced
with Xs and participants clicked on the target’s location. This proce-
dure enabled us to verify that participants had actually located the
target. In the critical manipulation, distractors were either from the
same-size category (uniform trials) or the different-size category
(mixed trials) as the target (see Figure 1b). During task instructions,
no mention was made concerning the real-world size of the stimuli.
Trial types were randomly intermixed throughout the session. Feed-
back was given after every trial, and accuracy was encouraged, as
incorrect responses resulted in a 5-s delay before the next trial could
be initiated. There were 10 blocks of 72 trials, yielding 90 trials per
condition (each combination of set size, real-world target size, and
real-world distractor size). Reaction time (RT) and accuracy were
recorded.

Stimuli. Images of big objects and small objects, 200 of
each, were taken from Google image search and existing image
databases (Brady, Konkle, Alvarez, & Oliva, 2009; Konkle &
Oliva, 2012b). All small objects were the size of a desk lamp or
smaller; all big objects were the size of a chair or bigger. Big
and small objects were equalized across luminance and contrast
using the Spectrum, Histogram, and Intensity Normalization
(SHINE) Toolbox (Willenbockel et al., 2010) and matched such
that they did not differ in average area (approximated as the
number of nonwhite pixels) or aspect ratio, two-sample ¢ tests,
all p > .1. Figure 2 (left panel) shows several example stimuli.

Experimental setup. The experiments were run on an Apple
iMac computer (1920 X 1200 pixels, 60 Hz) using the Psycho-
physics Toolbox (Brainard, 1997; Pelli, 1997) in MATLAB
2010a (MathWorks, Natick, MA). Participants were positioned
approximately 57 cm away from the screen, such that 1 cm on
the screen was approximately equal to 1 degree of visual angle.
Stimuli had an average image background luminance of 69.7
cd/m?, and were presented on a uniform gray background
(170.0 cd/m?).
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Figure 1. (A) An example trial is shown. A target stimulus is presented for 1000 ms, and then after a 500 ms
blank delay, a search display appeared where target and distractor position varied randomly. Participants pressed

a spacebar as soon as they found the target, after which al

11 images turned into Xs and they selected the target

with the mouse. (B) Example displays are shown for each condition at Set Size 9. The real-world size of the
target and distractors was varied to create mixed displays (gray border) and uniform displays (black border).

Note that stimuli are shown here in grayscale on a white

background for visualization purposes; in the actual

experiment, stimuli were always contrast and luminance matched and presented on a gray background.

Outlier removal. RTs were trimmed to exclude trials in
which participants incorrectly identified the target or responded in
less than 300 ms. We further excluded trials that fell outside 3 SDs
from the median deviation of the median (Rousseeuw & Croux,
1993), computed separately for each combination of subject, set
size, display type, and real-world target size. Overall, 12.5%
(SD = 4.1%) of the trials were excluded.

Results

The search times for both the mixed and uniform displays are
depicted in Figure 2 (right panel). We calculated the search effi-
ciency for each of these conditions, based on the slope of the line
relating RT to set size. This slope is a measure of the cost, in RT,
for each additional distractor in the display. Thus, steeper slopes
indicate less efficient processing. Our main question of interest
was whether people search more efficiently in the mixed displays
(when the distractors are from the different-size category than the
target) than in the uniform displays (when the distractors and target
are from the same-size category). The results show that visual
search was more efficient in mixed displays than in uniform
displays, uniform slope: M = 50.40, SD = 15.10; mixed slope:
M = 43.58, SD = 12.49, 1(12) = 2.03, p = .065.

This result was also confirmed by a three-way repeated-
measures analysis of variance (ANOVA) on RT, with set size
(3, 9), real-world target size (big, small), and display type
(uniform, mixed) as factors. Participants responded faster when
the target was small, F(1, 12) = 32.5, p < .001, n, = 0.73, and
when the displays were mixed, F(1, 12) = 11.9, p < .01, n; =
0.50. Most important, the interaction between set size and
display type was significant, F(1, 12) = 5.08, p < .05, n} =
0.30, indicating that the increase in RT with additional distrac-
tors was reliably lower for mixed trials than for uniform trials.
These results demonstrate that there were consistent differences

between big and small objects that observers can use to improve
visual search performance.

Finally, we also found that this difference in search slopes was
greater when the target was a small object than when the target was
a big object, 3-way interaction, F(1, 12) = 33.1, p < .001, m; =
0.73. Post hoc tests revealed that search slopes differed between
mixed and uniform conditions when the target was a small object,
t(12) = 5.17, p < .001, but did not differ when the target was a big
object, #(12) = —.65, p = .53. Thus, search was most efficient
when the target was a small object and distractors were big objects.
Search asymmetries are common in visual search tasks (Wolfe,
2001) and suggest asymmetric overlap in object features (e.g., that
these small objects have features that separate them from big
objects, but that the big objects share many of their features with
small objects). Although these asymmetries likely depend on the
stimulus set (see Experiments 2—4), they are consistent with the
conclusion that small and big objects are distinguished by differ-
ences in perceptual features, and could provide insight into how
big and small objects overlap in feature space.

The big object category in this experiment contained objects with
a very wide range of sizes, from chairs to buildings. This range raised
the possibility that only a subset of the biggest objects, namely the
buildings, were driving the effects we observed. To test this possibil-
ity, we removed any trial in which a building appeared (25 images) as
either a target or as a distractor, excluding 36.25% of trials. Elimi-
nating trials in which a building appeared as a big object did not
change the pattern of results: Set Size X Display Type interaction,
F(1,12)=14.2,p < .01, 'q,z, = 0.54, suggesting that this effect cannot
be attributed to the distinction between buildings and objects.

Experiment 2: Controlled Stimuli

In the first study, we broadly sampled from the set of big and
small objects. However, this stimulus set was not controlled for a
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Exp 1: Widely Sampled Stimuli
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Figure 2. Experimental stimuli and results are shown for Experiment 1. The left panel shows examples of 6 big
objects and 6 small objects. The right panel shows reaction time data (ms), plotted as a function of set size. Mixed
displays, where target and distractors differed in real-world size, are plotted with gray lines; Uniform displays, where
the target and distractors were from the same real-world size, are plotted with black lines. Data are collapsed across
the real-world size of the target item. Error bars represent 95% within-subject confidence intervals (Morey, 2008).

number of possible differences between big and small objects that
could influence visual search performance, ranging from differ-
ences in low-level image statistics to differences in conceptual
similarity. In Experiment 2, we selected a highly controlled set of
big and small objects that were matched in terms of several
low-level properties (e.g., spatial frequency and orientation con-
tent, extent, and boundary contour variance), and experience-based
properties (e.g., object familiarity and typicality). If any of these
factors accounted for the results of Experiment 1, then the differ-
ence between mixed and uniform trials should be eliminated with
this controlled stimulus set.

Method

Participants. Fourteen naive subjects (Harvard students or
affiliates) participated. One participant was excluded for not fol-
lowing task instructions (pressing the response button before the
search display appeared). All participants were 18 to 35 years old
and had normal or corrected-to-normal visual acuity.

Stimuli. Small objects were chosen to have a canonical ori-
entation (Palmer, Rosch, & Chase, 1981), and buildings were no
longer included in the set of big objects. Contour variance was
measured by computing the standard deviation of the distance
from the centroid of each object (Gonzalez, Woods, & Eddins,
2009) to each point on the objects contour, as previous research
has indicated this factor may influence visual search (Naber,
Hilger, & Einhéduser, 2012). Object extent was taken as the ratio of
the area of the object to its rectangular bounding box (Gonzalez et
al., 2009). We also measured image area (percentage of nonwhite
pixels within a square frame) and aspect ratio (max height/max
width in the picture plane). Finally, an Amazon Mechanical Turk

(mTurk) experiment was conducted to obtain typicality and famil-
iarity rankings for each object on a 4-point Likert scale.

Sixty final objects (30 big objects, 30 small objects) were
chosen so that the two sets did not differ on any of the above
features, two-sample £ tests, all p > .4. These objects and back-
grounds were then matched in terms of their intensity histograms
(luminance and contrast) and power spectra (power at each orien-
tation and spatial frequency) using the SHINE Toolbox, (Willen-
bockel et al., 2010). These images were set to an average lumi-
nance of 95.8 cd/m? presented on a lighter gray background
(170.0 cd/m?) to ensure they segmented from the background
easily. Example stimuli are shown in Figure 3 (left panel).

Given the smaller stimulus set, trials were counterbalanced so
that each object appeared as a target equally often in all conditions.
All other procedures were the same as in Experiment 1.

Results

RTs were trimmed following the same procedure as in Experi-
ment 1, excluding 9.95% of the trials (SD = 4.12%). The results
of Experiment 2 are plotted in Figure 3 (right panel). Overall, we
observed the same pattern of results as in Experiment 1, even with
this highly controlled stimulus set. That is, visual search was more
efficient for mixed displays, when targets and distractors differed
in real-world size, relative to uniform displays, when targets and
distractors were of the same real-world size, uniform slope: M =
78.26, SD = 21.11, mixed slope: M = 65.41, SD = 19.44, 1(12) =
4.75, p < .001.

These observations were confirmed with a three-way repeated-
measures ANOVA. Observers responded faster when the target
was a small object, F(1, 12) = 25.6, p < .001, m; = 0.68, and on
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Exp 2: Controlled Stimuli
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Figure 3. Experimental stimuli and results are shown for Experiment 2. The left panel shows examples of 6
big objects and 6 small objects. The right panel shows reaction time data (ms), plotted as a function of set size.
Mixed displays, where the target and distractors differed in real-world size, are plotted with gray lines; Uniform
displays, where the target and distractors were from the same real-world size, are plotted with black lines. Data
are collapsed across the real-world size of the target item. Error bars represent 95% within-subject confidence

intervals (Morey, 2008).

mixed displays, F(1, 12) = 35.2, p < .001, m; = 0.75. Observers
were again more efficient at searching in the mixed relative to
uniform displays, F(1, 12) = 23.7, p < .001, n,z, = 0.66. Unlike
Experiment 1, this effect was not modulated by whether the target
was a big or small object, F(1, 12) = 1.9, p = .19.

Thus, the ability to find a target faster when distractors are of a
different real-world size (mixed displays) does not appear to be
driven by low-level image and basic contour features, which were
matched in this stimulus set. Given the reduced number of stimuli
in Experiment 2, these effects were also confirmed using linear
mixed-effects models to ensure that the results generalized across
items and participants (see Appendix, Section I).

Experiment 3: Texture-Form Stimuli

The previous results demonstrated that there are robust differ-
ences between big and small objects that can be used to facilitate
visual search. These differences cannot be explained by simple
low-level image features, and as such, points to a difference in
mid-level features as a guiding factor (Treisman & Gelade, 1980;
Itti & Koch, 2000; Wolfe, 1994; Duncan & Humphreys, 1989).
However, in both experiments, big and small objects were also
recognizable and therefore also differed in their semantic content.
Thus, the search efficiency differences we observed in the previous
experiments could be due to semantic interference (Telling, Ku-
mar, Meyer, & Humphreys, 2010; Moores, Laiti, & Chelazzi,
2003). On such an account, similar-sized objects might impede
search performance differentially on uniform displays because
they are more semantically related to each other.

To examine this possibility, we generated a “semantic knock-
out” stimulus set by creating images of big and small objects that
loosely preserve an object’s form and feature differences between
objects, but which are not recognizable. We used a texture syn-
thesis algorithm to create stimuli that match the first- and second-
order statistics of a target image within a series of receptive
field-like pooling windows (Freeman & Simoncelli, 2011). By
pooling image statistics within separate windows, these stimuli
capture texture in a way that preserves the coarse form of the
object (texforms). Assuming these texforms preserve the features
that guide visual search (Rosenholtz, Huang, & Ehinger, 2012;
Alexander, Schmidt, & Zelinsky, 2014), these stimuli should gen-
erate the same pattern of results as the original objects. In contrast,
the semantic interference account predicts that we should no
longer find a difference in search efficiency because the stimuli are
unrecognizable.

Method

Participants. Participants were 16, naive Harvard students or
affiliates, aged 18 to 35 years. Three participants did not complete
the experiment; their data were never analyzed. All participants
had normal or corrected-to-normal visual acuity.

Stimuli. Synthesized versions of the big and small objects
were generated by initializing Gaussian white noise images and
iteratively adjusting them (using a variant of gradient descent) to
conform to the modeled parameters of the original image (Freeman
& Simoncelli, 2011, see Appendix, Section II). This produced
images that were nearly always unrecognizable, while preserving
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mid-level image statistics in each pooling window. Amazon Me-
chanical Turk norming studies were run to select a subset of 60
images for which the original objects were unidentifiable, even
when answers were coded generously (e.g., “stove” was accepted
as a correct response for “jukebox” because it is the same sized
object with a similar shape). In our final subset of 60 items, the
average identification accuracy was 2.83%, SD = 4.02% (N = 30).
Example stimuli are shown in Figure 4 (left panel).

Procedure. Search displays with 3 or 8 items were presented
in a circle around fixation at 7.4 degrees of eccentricity, and
subtended 5.1 X 5.1 degrees of visual angle (192 X 192 pixels).
As eccentricity is a parameter in the texture synthesis algorithm,
we generated one set of texforms at a single eccentricity. Each
texform stimulus was presented inside of a black outline to ensure
that it was clearly visible from the background. The overall lumi-
nance of the texforms and background were matched (M = 77.6
cd/m?). All other aspects of the experimental design were identical
to Experiment 2.

To ensure that the texforms were not recognizable for the partici-
pants who completed the visual search task, observers were presented
with two follow-up tasks at the end of the visual search experiment.
First, they were asked: “In this experiment, there were two groups of
images. On some trials, the image you were looking for was from a
different category than the other images, and on other trials, all of
images were from the same category. Please guess what the two
categories could be.” The choices were “1-Animals/Objects, 2-Tools/
Non-Tools, 3—Natural/Unnatural, 4—Edible/Non-Edible, 5-Big/Small,
6—Familiar/Unfamiliar, 7-1 have no idea.” Second, subjects com-
pleted an unspeeded, randomized questionnaire in which they were
asked to guess the identity of each texform.

LONG, KONKLE, COHEN, AND ALVAREZ

Results

RTs were trimmed with the same procedure, excluding 14.9%
(SD = 3.9%) of the trials. Overall, we found the same pattern of
results with unrecognizable texform stimuli as with intact objects
(see Figure 4). That is, visual search was more efficient in mixed
displays than in uniform displays, uniform slope M = 91.14, SD =
32.72; mixed slope M = 78.69, SD = 35.69, #(12) = 3.27, p < .01.
A repeated-measures ANOVA confirmed that participants re-
sponded faster on mixed trials, F(1, 12) = 20.2, p < .001, m} =
0.63 and searched more efficiently in mixed displays, F(1, 12) =
8.68, p = .01, m, = 0.42. We also confirmed these results using
linear mixed-effects models, which showed that the improved
efficiency for mixed displays generalized across both items and
participants (see Appendix, Section III).

The efficiency advantage on mixed trials did not differ depend-
ing on whether the target was a small object texform or a big object
texform, 3-way interaction, F(1, 12) = 0.80, p = .39, m; = 0.06.
Although the interaction was not significant, numerically the effect
appears bigger for big object targets than small object targets,
which is opposite to the trends observed in Experiment 1 and 2. To
determine whether these differences were consistent, we ran two
replication experiments, which again had no statistically signifi-
cant interactions, although the same opposing assymetries were
present (see Appendix, Sections IV, V). Thus, the results suggest
there is a weak but potentially consistent difference between
texforms and their original images: the feature overlap betweeen
big versus small texforms maybe be subtly different than the
feature overlap between big versus small objects.

Exp 3: Texture-Form Stimuli
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Figure 4. Experimental stimuli and results are shown for Experiment 3. The left panel shows examples of
texforms generated from 6 big objects and 6 small objects, corresponding to the original objects in Figure 3. The
right panel shows reaction time data (ms), plotted as a function of set size. Mixed displays, where target and
distractors differed in real-world size, are plotted with gray lines; uniform displays, where the target and
distractors were from the same real-world size, are plotted with black lines. Data are collapsed across the
real-world size of the target item. Error bars represent 95% within-subject confidence intervals (Morey, 2008).
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Follow-up tasks. The results of our follow up tasks suggest
that people had little to no awareness of the relevant categorical
distinction (big vs. small objects). The most common response was
animate versus inanimate, and no subject guessed that real-world
size was the relevant distinction. In addition, none of the partici-
pants accurately guessed the identity of more than one of the 60
texforms. When coding liberally (e.g., accepting responses some-
what similar to the original object), participants guessed an aver-
age of 3.0 out of 60 objects (SD = 1.68). Thus, it is unlikely that
explicit categorization or identification enabled participants to find
target texforms faster in mixed-size trials.

The purpose of using these texforms was to preserve perceptual
differences while preventing explicit object recognition. One con-
cern is that participants may have been consistently misidentifying
the texforms as another object within the correct size category. To
test whether this was true, we asked each participant who per-
formed the search task to guess what each texform was. Partici-
pant’s responses were then coded liberally for any size information
(e.g., “a cheetah’s face” and “microbes” were coded as small)
when possible, though some participants refused to respond (“I
don’t know”) or gave answers that were uncodable for size (e.g.,
“something burning,” “swirl,” “mayan ritual”). These uncodable
responses occurred on 24.1% of the trials and were counted as
incorrect. Overall, participants were not above chance in naming
objects that were the right size, M = 44.1%, SD = 10.4%,
#(12) = —2.0, p = .07. This analysis suggests it is unlikely that
participants are able to search more efficiently on mixed-sized
displays by recognizing texforms as objects and subsequently
leveraging semantic information about their real-world size.

Additional control task. Our follow up tasks suggest that
participants could not explicitly recognize the original objects used
to generate the texforms. However, it remains possible that these
texforms implicitly activated real-world size knowledge, and that
this knowledge could lead to implicit semantic influences on visual
search. One method for detecting implicit knowledge activation is
to use a forced-choice task (e.g., Turk-Browne, Jungé, & Scholl,
2005). Thus, in the above norming study, participants also com-
pleted a forced choice task, guessing the real-world size of each
texform.

First, participants in our norming study were asked to guess the
real-world size of the texforms using a continuous scale from 1 (as
small as a key) to 7 (as large as a building). These responses were
binarized and coded for accuracy according to whether the original
object was small or big. Participants chose the correct real-world
size category of the original objects slightly more often than
chance, M = 59.8% correct, SD = 6.3%, 1(29) = 8.59, p < .0001,
see Appendix, Section VI.

We next split our visual search data into two halves as a function
of how accurately the target texform was classified as big or small
in the norming study. In the top split of the data, target texforms
were classified as big or small at a rate above chance, M = 76.4%,
SD = 10.9%, two-tailed  test against chance (50%), #(29) = 13.29,
p < .0001, and in the bottom split of the data at a rate below
chance, M = 43.2%, SD = 16.25%, 1(29) = —2.28, p < .05. We
conducted a four-way ANOVA with factors of set size, display
type, real-world target size and data split. If participants were
implicitly recognizing the size of the object from the texforms and
using this abstract knowledge to guide visual search, then we

2 <

should see accentuated effects in the top split (and potentially
reversed effects in the bottom split).

However, we observed the same pattern of results in both halves
of the data: there was no difference in overall RT, F(1, 12) = .97,
p = .34, m; = 0.08 and no difference in how efficiently partici-
pants found targets on mixed versus uniform displays, F(1, 12) =
0.92 p = .36, n} = 0.07. This analysis suggests that it is unlikely
that participants were using implicit knowledge of real-world size
to modulate their search efficiency.

Experiment 4: Texture Stimuli

To understand more clearly what critical visual information could
distinguish between big and small objects, in the final experiment we
generated textures that preserved the same image statistics as those
used in Experiment 3, but distributed them across the entire image.
That is, the image features were synthesized over one pooling window
that included each entire object (Portilla & Simoncelli, 2000; Balas,
2006, see Appendix, Section II). The resulting images do not preserve
object form and have little to no perceptible contours (Figure 5, left
panel), which can be easily seen by comparing these stimuli with
those from Experiment 3 (see Figure 4, left panel).

Method

Participants. Thirteen Harvard affiliates or students again
participated in Experiment 4. All participants were 18 to 35 years
old and had normal or corrected-to-normal visual acuity.

Procedure. All procedures were identical to Experiment 3,
except the stimuli.

Stimuli. Textures were generated using the same algorithm in
Experiment 3, except that white noise was coerced to have the
same statistics as the original image pooled across the entire
image. See Appendix, Section II for details.

Results

RTs were trimmed using the same procedure as the previous
experiments, M = 17.02%, SD = 6.52%. Unlike the previous exper-
iments, we found that visual search was not more efficient in mixed
displays than in uniform displays, uniform slope: M = 112.65, SD =
30.25, mixed slope: M = 106.31, SD = 21.92, #(12) = 1.42, p = .18,
see Figure 5. A repeated-measures ANOVA confirmed that partici-
pants were not faster at finding textures when distractors were gen-
erated from objects of a different size category, F(1, 12) = 1.64,p =
23, m, = .12, and this effect did not interact with the number of
distractors, F(1, 12) = 1.19, p = .30, 3 = .09.

We did not observe the same search advantage when targets and
distractors were from different size categories, even though these
textures were generated from the exact same images as the stimuli
in Experiment 3—the numerical trend was in the same direction,
but the difference was not reliable. Thus, it appears that these
textures preserve less of the critical feature differences between
big and small objects than the texforms used in Experiment 3.
Taken together, these results suggest that the spatial organization
of these texture statistics is important for capturing the differences
between big and small objects.
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Exp 4: Texture Stimuli
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Figure 5. Experimental stimuli and results are shown for Experiment 4. The left panel shows examples of
textures generated from six big objects and six small objects, corresponding to the original objects in Figure 3.
The right panel shows reaction time data (ms), plotted as a function of set size. Mixed displays, where target and
distractors differed in real-world size, are plotted with gray lines; Uniform displays, where the target and
distractors were from the same real-world size, are plotted with black lines. Data are collapsed across the
real-world size of the target item. Error bars represent 95% within-subject confidence intervals (Morey, 2008).

General Discussion

Here, we explored whether big and small objects have reliable
perceptual differences that can be extracted by early stages of visual
processing, focusing on real-world object size as a case study of broad
category membership. We found that visual search was more efficient
when the target and distractors differed in real-world size, both when
exemplars were widely sampled (Experiment 1), and when they were
more controlled (Experiment 2). Critically, when we reduced the
objects to textures that preserved some form information, we still
found a gain in search efficiency (Experiment 3), but when we
reduced the objects further to textures without form information, this
visual search effect was absent (Experiment 4). Together, these results
demonstrate that big objects and small objects differ in mid-level
perceptual features, which are used to guide attention in visual search.
In the following sections, we discuss the nature of these mid-level
perceptual features, how the visual system might develop sensitivity
to these features, and the implications of these findings for models of
object recognition and categorization.

Features of Big Versus Small Objects

The present results demonstrate that big and small objects classes
are distinguishable by mid-level perceptual features—but what ex-
actly is the nature of these feature differences? Based on the image
synthesis model we used (Freeman & Simoncelli, 2011), we know
that these features are related to differences in local texture and
contour statistics, including the presence of junctions, corners, and
parallel lines. Further, we know that these features may contain coarse
shape information, because the basic textures—which did not pre-

serve any coarse shape information—did not generate a reliable
category search advantage. These findings suggest that the key dif-
ferences are in how texture statistics are spatially organized.

Although understanding exactly which features embedded
within the model parameters separate big and small object classes
is beyond the scope of the current paper, it is nevertheless useful
to consider some intuitive possibilities. One possibility is that the
relevant mid-level perceptual features are related to a difference in
perceived curvature. For example, there are structural limitations
on the shapes that big objects can have (Gordan, 1981): Big objects
must withstand gravity and tend to have more rectilinear forms,
whereas small objects can be either boxy or curvy (e.g., notebooks,
basketballs). Further, neural regions involved in processing objects
are sensitive to differences in curvature, particularly along a boxy
to curvy axis (e.g., Srihasam, Vincent, & Livingstone, 2014;
Brincat & Connor, 2004).

Consistent with this idea, participants rated big objects as boxier
and small objects as curvier, for all four of our stimulus sets,
including both the texforms and the basic textures (see Appendix,
Section VII). However, this boxy-curvy dimension is only one
possible dimension within a large feature space: because mid-level
features represent combinations of simpler features (e.g., a ‘corner’
is a particular combination of two lines), the possible set of
mid-level features is unconstrained. Further research will be re-
quired to create a vocabulary for describing mid-level perceptual
features, and to parse the space of mid-level features into psycho-
logically meaningful dimensions. Critically, the primary goal of
the present work was to demonstrate that mid-level perceptual
features differences exist between big and small objects.
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Finally, across the experiments we found different patterns of
search asymmetries, which may inform our intuitions about the fea-
ture spaces of big and small objects. When stimuli were widely
sampled (Experiment 1), we found that searching for a small object
among big objects was more efficient than searching for a big object
among small objects. This suggests that small objects are more
different from big objects than big objects are from small objects. At
first blush this seems illogical, but such asymmetries in similarity can
arise when the features of one category are a partial subset of the
features of the other category (Tversky & Gati, 1978). On this ac-
count, the features of big objects in Experiment 1 are a subset of the
features of small objects, but small objects have some features that are
uncommon among big objects (e.g., both small and big objects can be
boxy, but more small objects are curvy). However, this particular
asymmetric relationship may not be a general property of big and
small objects, as there were no reliable asymmetries based on whether
the target was a big or a small object when stimuli were tightly
controlled (Experiment 2), reduced to texforms (Experiment 3), or in
our subsequent replications of these two experiments (see Appendix,
Sections IV and V). Future research will help understand the degree
to which there may be a true asymmetry in the feature spaces of big
versus small objects.

How Do We Develop Sensitivity to These Features?

Although real-world size is a broad distinction that spans many
basic-level categories, big and small objects seem to have reliably
different mid-level perceptual features. There are two main perspec-
tives for how sensitivity to these perceptual features may arise.

One possibility is that our visual system is innately predisposed
to be sensitive to differences in certain perceptual features. For
example, recent evidence posits the existence of a protomap of
curvature along the ventral visual stream (Srihasam et al., 2014).
On this account, our perceptual systems are naturally wired to
discriminate the broad categories of big and small objects.

Alternatively, experience-dependent tuning mechanisms may de-
tect perceptual regularities for conceptually relevant dimensions (Ko-
honen, 1982; Polk & Farah, 1995), including (but not limited to) the
dimension of real-world size. Indeed, previous work suggests that the
mere act of categorizing objects together may cause them to become
perceptually similar (Goldstone, 1994), creates task-specific features
(Schyns & Rodet, 1997), and causes neural representations in visual
cortex to become less discriminable (Folstein, Palmeri, & Gauthier,
2013). On this account, these perceptual differences could become
psychologically salient due to extensive experience perceiving and
interacting with objects at different real-world sizes.

Implications for Models of Object Recognition and
Categorization

Regardless of the ultimate cause for the visual system’s sensitivity
to perceptual differences between big and small objects, these find-
ings raise the intriguing possibility that earlier stages of visual pro-
cessing can inform high-level processes about what broad category an
object may belong to, rendering object recognition and categorization
more efficient. Here we propose that such mid-level features provide
information about the broad superordinate category of the object. We
use the term mid-level facilitation to refer to the idea that early
sensitivity to these kinds of mid-level features may facilitate down-

stream, higher-level processes like object recognition and action prep-
aration by constraining the possible basic-level identities considered
by the visual system.

Although we focused on real-world size in the present study, it is
likely that other broad categories are distinguished by mid-level
perceptual features. Broad distinctions that are behaviorally salient
and have a plausible basis in evolutionary history may be particularly
good candidates, whereas arbitrary distinctions may not. Tools, for
example, may share similar mid-level features, which allow them to
be easily grasped compared with other nonmanipulable objects. Mid-
level features may also distinguish animate entities from inanimate
objects (Levin, Takarae, Miner, & Keil, 2001; Long, Stdrmer, &
Alvarez, 2014), another core dimension of object representation.
Although it is difficult to make a priori predictions for all possible
broad category distinctions, the current study introduces an approach
for investigating the perceptual correlates of broad conceptual cate-
gories.

Conclusion

Using a visual search task, we found that objects appear more
similar to other objects of the same real-world size than objects of a
different real-world size (when all objects are the same physical size
on the screen). These findings show that the visual system is sensitive
to mid-level perceptual features that distinguish big and small objects.
Because such features can be extracted by early stages of the visual
system, these results suggest that early stages of perceptual processing
can facilitate broad-category level processing. We propose that ex-
amining the intrinsic, statistical dependency between broad concep-
tual distinctions and perceptual features will advance a more inte-
grated understanding of how we perceive, recognize, and categorize
objects.
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Appendix

Stimuli Details, Replications, & Supplemental Analyses

I. Experiment 2 (Controlled Stimuli):
Linear Mixed-Effects Modeling

Given that we used a relatively small set of items (60 total) in
Experiment 2, it was important to test whether these results gen-
eralize across items. We used a linear mixed-effects model to test
for fixed effects of set size, display type, and their interaction
while simultaneously generalizing across individual subjects and
items. Specifically, we modeled log RT as a function of set size
and display type, including random effects of set size, display
type, and their interaction for both subjects and items on the
intercept and the slope terms of the model—the maximal random-
effects structure justified by our experimental design (Barr et al.,
2013). The models were implemented using R (R Development
Core Team, 2008) and the R packages Ime4 (Bates & Maechler,
2009) and language R (Baayen, 2009).

We tested for significant effects by performing likelihood-ratio
tests, comparing a model with the set size by display type inter-
action as a fixed effect to another model without it, but which was
otherwise identical, including the same exact random-effects struc-
ture (Barr et al., 2013). Models were fit using full maximum-
likelihood estimation to facilitate comparison between models.
Comparing these two models revealed that the RT by set size
slope was significantly lower on mixed trials, x*(1) = 4.95, p =
.025. Thus, we can conclude that search was more efficient on
mixed trials, and that this effect generalized across participants
and items.

I1. Experiments 3 and 4: Stimulus Generation Details

The model measures basic features (lines/edges of different
orientations and sizes), and correlations between basic features

Features averaged : Cropped
Im;iizﬁiégres over overlapping Sy?r':’]haes;zed synthesized
pooling windows 9 image

Exp 3:
Texform
stimuli

Image features
measured

Features averaged
over a single
pooling window

Exp 4:
Texture
stimuli

Figure Al.

Schematic of stimuli generation procedure for the stimuli used in Experiments 3 and 4. In

Experiment 3, we generated texforms by preserving the spatial arrangement of image features using the
algorithm developed by Freeman and Simoncelli (2011). Experiment 4 used the same algorithm, except image

features were pooled over the entire image.
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across space and size (useful for detecting corners and parallel
lines). First, the model decomposes images using a steerable
pyramid in the Fourier domain (Simoncelli & Freeman, 1995).
Steerable pyramid models decompose an image using a bank of
wavelet filters at multiple scales and orientations. The model first
splits the image into different spatial frequency bands. In this
implementation, these subbands were scaled to four different sizes,
and the degree to which four orientations ranges are present in
those scaled images was measured, creating 16 different filters.
This created an overcomplete representation of the image that
contained information about both the frequency and location of
orientation information.

In the midventral model, developed by Freeman and Simoncelli
(2011), the responses from these filters are correlated with each
other, as well as with responses between different scale filters and
between different orientation filters. The mid-level model contains
several features: (a) marginal pixel statistics over the entire image
and within pooling regions, (b) features analogous to the response
of V1 simple cells and V1 complex cells for each combination of
spatial frequency and orientation at each location, (c) cross-
correlations of these complex cell responses across different scales
and orientations, (d) spectral statistics, or features derived from
products of V1 simple cells that are sensitive to changes in phase.
Coarsely, these correspond to sensitivity to luminance, contrast,
spatial frequency, sharp line changes, contours, edges, junctions,
corners, and shading.

These feature representations are then down-sampled, that is,
averaged across portions of the image dubbed “pooling regions.”

“Write what you think
this object could be”

The size of these pooling regions is extremely important to the
resulting synthesized image. These are derived from a model of the
receptive fields in V2 (Freeman & Simoncelli, 2011). To create
our texform stimuli, we choose pooling regions that were slightly
different than those used by Freeman & Simoncelli to create
texforms that were unrecognizable at the basic level (parameters:
critical spacing = .5, radial/tangential aspect ratio = 1). To create
the textures used in the Experiment 4, we used only one pooling
window that averaged these features across the entire image (see
Figure Al).

Stimuli were placed on a 640 X 640 gray background that had
the same average luminance as the image, and stimuli were placed
at four different positions within these pooling windows at the
same distance from the center of the image (or “fixation”). Lastly,
Gaussian white-noise images were adjusted iteratively (using a
variant of gradient descent) to conform to these modeled param-
eters from an original image (Freeman & Simoncelli, 2011) for 50
iterations.

I11. Experiment 3 (Texforms): Linear
Mixed-Effects Modeling

In Experiment 3, we also conducted linear mixed-effects mod-
eling to ensure the results generalized across items. However, the
maximal random-effects model justified by our design without the
predicted interaction failed to converge. In this model, random
item intercepts tended to be perfectly correlated with the overall
intercept, suggesting less variability at the item level and thus an

Responses for this item

'soccer ball' 'bed'
'shrimp' 'snake'
'Human ear' 'child’
'bear' 'A sea bass'
'tiger' 'kitten'
'snake' 'blender blade'
'ball' 'flower'
'human ear' 'lemur’
'worm' 'fan’
'bag' 'dougnut’
'monkey" 'pig’
'banana’ 'tire'
'necklace' 'snake'
'a hole' 'seahorse’
'fan'
'a nutria'

Figure A2. Schematic of the basic level guessing task and example responses.
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overly complicated model. When random intercepts for items were
removed (but random slopes for items retained), both models with
and without the predicted interaction converged. Comparing these
two models (as in Experiment 2) revealed that search was more
efficient on mixed versus uniform displays, even when generaliz-
ing across participants and items, x*(1) = 6.05, p = .01.

IV. Replication of Experiment 2 (Controlled Stimuli)

Experiment 2 (with controlled stimuli) showed a trend for a
greater search advantage with small object targets, whereas Ex-
periment 3 (with texforms) showed the opposite trend for a greater
search advantage with big object targets. This difference is likely
driven by subtle feature differences between the controlled stimuli and

texforms. However, there were also minor methodological changes be-
tween these experiments that could contribute to these opposing trends.
To examine this possibility, we conducted a replication study of Exper-
iment 2, with two changes. First, items were presented in a circular
display (as in Experiment 3), and second, the stimulus set was comprised
of the original big and small objects that were used to create the texforms
of Experiment 3.

Overall, we found that these differences in stimuli and display
configuration did not influence the results (i.e., the pattern was the
same as the original Experiment 2)—visual search was more
efficient in mixed displays than in uniform displays: uniform
slope, M = 65.30, SD = 21.86; mixed slope, M = 55.41, SD =

a. Guess the size of the object using the picture scale below.
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Figure A3. Task and results from the texform norming experiment. (a) Participants (N = 30) were asked to
judge the size of the texform stimuli using a picture scale. (b) Example-controlled stimuli (used in Experiment
2) and texform stimuli (used in Experiment 3) are shown side by side. Below each texform is the average size
ranking using the scale in the panel above. (c) Average size ranking values for all texforms used in Experiment
3. Each semitransparent dot represents one image; the lines represent the average of the size rankings for each
object size. See the online article for the color version of this figure.
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18.21, #(12) = 3.01, p = .01. This result was confirmed by a
three-way repeated-measures ANOVA on RT, with set size (3, 9),
real-world target size (big, small), and display type (uniform,
mixed) as factors. Participants responded faster when the target
was small, F(1, 12) = 38, p < .001, n} = 0.76, and when the
displays were mixed, F(1, 12) = 20, p < .01, m3 = 0.625. Most
important, the interaction between set size and display type was
significant, F(1, 12) = 8.3, p = .01, 'r],z, = (0.41, indicating that the
increase in RT with additional distractors was reliably lower for
mixed trials than for uniform trials. This effect was again not
modulated by the real-world size of the target, F(1, 12) = 1.44,
p = .253,m3 = 0.11.

V. Direct Replication of Experiment 3 (Texforms)

To ensure that we had reliable results, we conducted a direct
replication of our study with another group of 13 participants. Overall,
we found the same pattern of results: visual search was more efficient
in mixed displays than in uniform displays (uniform slope: M =
78.28, SD = 16.89, mixed slope: M = 64.44, SD = 13.84, 1(12) =
4.08, p < .01). This result was confirmed by a 3-way repeated
measures ANOVA on RT, with set size (3,9), real-world target size
(big, small), and display type (uniform, mixed) as factors. Participants
responded faster when the displays were mixed, F(1, 12) = 22, p <
001, m3 = 0.647). Most important, the interaction between set size

Widely Sampled Stimuli

Very
boxy 3

Somewhat
boxy

Equally curvy
and boxy

Somewhat
curvy

Very

curvy Small

Objects

‘ Small Big
Objects  Objects

Controlled Stimuli

Objects

and display type was significant, F(1, 12) = 15.6, p < .01, n, =
0.57). As before, this effect was not modulated by the real-world size
of the target, F(1, 12) = 2.2, p = .164, ; = 0.16).

VI. Experiment 3: Texform Norming

Consistency of guesses. In our texform norming task, partic-
ipants were informed that the texforms were “scrambled objects”.
Even so, participants were not very accurate in identifying the
basic-level category of the texforms (M = 2.8%, SD = 4.03%).
Not only were they inaccurate, but they were also inconsistent with
each other. To show this inconsistency, we grouped responses by
basic-level category and counted the number of unique responses
to a given texform. Responses were grouped relatively generously;
similar subordinate categories were grouped together (i.e., high-
heeled shoe, boot, and shoe). When an observer failed to give a
response (“I don’t know”), this was not counted as a unique
response. Unlike participants in the search task (Experiment 3),
participants in the norming task rarely responded with “I don’t
know” (M = .5% of all responses; 10 responses across all partic-
ipants). Unique responses to a given texform accounted for 74.8%
of the reported object identities (M = 22.3, SD = 3.4 unique
identities for 30 participants, 60 items). Thus, the texforms do not
appear to look like any particular object (see Figure A2).

Texture Stimuli

Texture Form Stimuli

Big Small Big
Objects  Objects

Small Big
Objects  Objects

Figure A4. Small objects were judged to be curvier than big objects across our four different stimuli sets. Error

bars represent the standard error of the mean.
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Real-world size classification. Participant’s were unable to
reliably guess the basic-level identities of the texforms. However,
could these same participants guess the size of the original images
used to generate the texforms? Participants (N = 30) were also
asked to “guess the size of the object using the picture scale
below” (see Figure A3) for each texform in a random order.

We first binarized all size rankings and compared them to the
original size category of each texform (see Figure A3). Small: key
(1) through backpack (4); big: chair (5) through arch (8). This
resulted in a binary accuracy score for each item and participant.
We then averaged across all participants to generate a size classi-
fication score for each item.

To ask if participants were able to classify the items at a rate
above chance, we compared average size classification scores
across items to a bootstrapped distribution for chance performance
on this task. Specifically, we simulated chance performance for
1000 experiments for 30 observers rating 30 items. Both the
average size classification score for both big objects (M = 56.44%,
SD = 14.06%) and small objects (M = 63.22%, SD = 15.02%)
fell above the highest value obtained on this distribution, indicat-
ing that they were classified at a rate above chance (p < .0001).
Figure A3 contains a plot that shows the average size rankings of
these 60 texforms.

VII. Curvature Ratings (Experiments 1-4)

One possible mid-level perceptual difference between big and
small objects is the degree of curvilinearity versus rectinlinearity.

109

Intuitively, small objects may be curvier than big objects, as they
are often made to be hand-held, whereas big objects may be more
rectlinear, as they are structures that must withstand gravity and
provide surfaces. We explored the relationship between our big
and small object stimulus sets and curvature judgments in several
online behavioral experiments. Four sets of 20 observers on Am-
azon Mechanical Turk (mTurk) rated each item from our different
stimulus sets (in a random order) according to the following scale:
1 (very curvy), 2 (somewhat curvy), 3 (equally boxy and curvy), 4
(somewhat boxy), 5 (very boxy).

Ratings were averaged for big and small categories (see
Figure A4). Overall, small objects were consistently judged to
be curvier than big objects in the widely sampled stimuli used
in Experiment 1: big objects, M = 3.45; small objects, M =
2.41, 1(398) = —10.68, p < .0001; the controlled stimuli used
in Experiment 2: big objects, M = 3.29; small objects, M =
2.29,1(58) = —4.03, p < .001; the texforms used in Experiment

3: big objects, M = 3.20; small objects, M = 2.33,
1(58) = —4.46, p < .001; and the textures used in Experiment
4: big objects, M = 3.02; small objects, M = 2.46,
1(58) = —3.25, p < .01. These data suggest that differences in

curvature may be one important cue for characterizing the
features of big versus small objects.
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