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a b s t r a c t

When we view a picture of an object, we automatically recognize what the object is and know how big it
typically is in the world (Konkle & Oliva, 2012). Is information about an object’s size activated only after
we’ve identified the object, or can this size information be activated before object recognition even occurs?
Wepreviously found that big and small objects differ inmid-level perceptual features (Long, Konkle, Cohen,
& Alvarez, 2016). Here we asked whether these perceptual features can automatically trigger real-world
size processing, bypassing the need for basic-level object recognition. To test this hypothesis, we used an
image synthesis algorithm to generate ‘‘texform” images, which are unrecognizable versions of big and
small objects that still preserve some textural and form information from the original images. Across
two experiments, we find that even though these synthesized stimuli cannot be identified, they automat-
ically trigger familiar size processing and give rise to a Size-Stroop effect. Furthermore,we isolate perceived
curvature as one feature the visual systemuses to infer real-world size. These results suggest thatmid-level
perceptual features can automatically feed forward to facilitate object processing, and challenge the idea
that we must first identify an object before we can access its higher-level properties.

! 2017 Published by Elsevier B.V.

1. Introduction

Our object recognition system runs so smoothly and automati-
cally in the background that we rarely notice it tolling away. This
system seems particularly adept at identifying what we see at
the basic level – for example, if we see a small, smooth object with
a handle, we first identify this as ‘‘a mug” rather than as something
more general (‘‘an inanimate object”) or something more specific
(‘‘the coffee mug I received from my grandmother”, Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976). In fact, some work
suggests that we can categorize objects at the basic level as quickly
as we can detect their presence (Grill-Spector & Kanwisher, 2005).
Our automatic and effortless ability to categorize and identify
visual objects is often taken as the core goal of the brain’s visual
recognition system (DiCarlo & Cox, 2007).

However, recently it was also demonstrated that as soon as we
see a pictured object, we also automatically activate information
about how big or small the object typically is in the world
(Chiou & Ralph, 2016; Gliksman, Leibovich, Melman, & Henik,
2016; Konkle & Oliva, 2012; Sellaro, Treccani, Job, & Cubelli,

2015; see also Paivio, 1975; Rubinsten & Henik, 2002). Some evi-
dence for this automatic activation comes from a Size-Stroop para-
digm. In this task, participants were asked to compare two objects
and decide which one is visually bigger or smaller on the screen,
ignoring the real-world size of the objects. The visual sizes of the
two depicted objects could either be congruent with their real-
world size (e.g. a small cup and a big car), or incongruent (e.g. a
big cup and a small car) (see examples in Fig. 1). Critically, the task
only required judging which image was bigger or smaller on the
screen—knowledge about the real-world sizes of the objects was
irrelevant to the task. However, participants were faster to make
visual size judgments on the congruent trials, indicating that they
could not help but automatically process real-world size when pre-
sented with pictures of these objects.

Do we need to recognize a pictured object in order to know its
size in the real world? Classic models of conceptual representation
argue that semantic knowledge about objects is organized as a ser-
ies of predicates (e.g., ‘‘big enough to support a human”) that are
attached to conceptual nodes, such as ‘‘chair” (Collins & Quillian,
1969; Jolicoeur, Gluck, & Kosslyn, 1984). These nodes can be acti-
vated by the correct sets of input from the visual processing
stream, and in turn, serve as the point from which we access
knowledge about objects, such as how big or small they are in
the real world, or the context in which they are typically used
(i.e., a kitchen). On this account, object recognition precedes our
ability to access knowledge about an object. However, recognition
need not be the gateway through which we access all kinds of
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object knowledge. On an alternative account, perceptual feature
evidence accrued in parallel to the process of object recognition
could be used to make inferences about different functional prop-
erties of objects, including their size in the real world. Some evi-
dence for this alternative was recently provided by Cheung and
Gauthier (2014), who demonstrated that specific perceptual fea-
tures, like smoothness and symmetry, can automatically activate
conceptual information about whether something is animate or
inanimate. Thus, an alternative possibility is that perceptual fea-
tures can automatically activate real-world size information.

In prior work we established that there exist systematic percep-
tual differences that distinguish big objects from small objects. To
do so, we used a visual search task, with the logic that visual search
is slower when targets and distractors are perceptually similar
(Duncan & Humphreys, 1989; Long, Konkle, Cohen, & Alvarez,
2016). We found that participants searched more efficiently for a
small object target (e.g. cup) among big object distractors (e.g.
couch, piano, chair), and vice versa. Critically, this visual search
advantage persisted even when participants were searching for
unrecognizable versions of big and small objects that preserved
some texture and form information—‘‘texform” stimuli (Freeman
& Simoncelli, 2011; Long et al., 2016). These results indicate that
big objects and small objects have systematic perceptual differ-
ences that are preserved in ‘‘texform” stimuli.

Given this existence proof of feature differences, we can now
directly test the deeper question about the role these might play
in our cognitive architecture: do these perceptual features directly
activate size concepts and automatically trigger real-world size
processing, without requiring basic-level object recognition? To
do so, we used the Size-Stroop paradigm from Konkle and Oliva
(2012), but with unrecognizable texform stimuli. If basic-level
recognition is a necessary precursor to real-world size inferences,
then these texforms should not trigger any real-world size related
processing, and thus should not impact the speed of visual size
judgments in the Size-Stroop task. However, if these texform stim-
uli do trigger real-world size processing, we should see evidence
for a Size-Stroop effect.

To anticipate our results, we find that unrecognizable texform
stimuli generate a Size-Stroop effect (Experiment 1), and the
strength of this effect depends on the degree to which texforms
preserve information related to real-world size (Experiment 2).
To provide some intuitions about the features preserved in the tex-
forms that underlie these effects, we explored several properties.
We found that the perceived curvature of the texforms, but not
perceived viewing distance or depicted depth, predicted the mag-
nitude of the Size-Stroop effect for individual displays. Taken
together, these results demonstrate that real-world size informa-
tion is automatically activated by perceptual features, including
curvature properties, when observers perform a visual size task.
Broadly, these results are consistent with the possibility of a mod-
ified cognitive architecture in which early visual processing can
directly trigger the processing of higher-level object properties,
including real-world size.

2. Experiment 1

Texform images of big and small objects were generated using a
computational model of early visual processing (all stimuli in Fig. 2;
Freeman & Simoncelli, 2011; Long et al., 2016). In the first experi-
ment, two texforms were presented simultaneously at different
visual sizes, and we asked participants to make a visual size judg-
ment about which of two texforms was bigger or smaller on the
screen. Unbeknownst to the participants, on some displays, the rel-
ative visual sizes of the texforms were congruent with the real-
world sizes of their original objects (e.g. a big piano texform and a
small key texform). On other displays, this relationship between

Fig. 1. Example Size-Stroop displays from Konkle and Oliva (2012). Two objects
were displayed and the task was to judge which item was bigger on the screen. In
congruent trials, the object that was bigger on the screen was also a bigger object in
the real world. In incongruent trials, the object that was bigger on the screen was a
smaller object in the world. Participants were faster to make visual size judgments
when the visual size of the object was congruent with the real-world size of the
object, even though the object’s real-world size was irrelevant to the task.

Fig. 2. All 60 texforms used in Experiments 1 and 2. The top three rows correspond to texforms generated from pictures of big objects, and the bottom three rows correspond
to texforms generated from pictures of small objects.
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visual size and real-world sizewas reversed. If real-world size infor-
mation can be triggered from these texforms in the absence of basic-
level object recognition, then participants should be faster tomake a
visual size judgment on congruent displays.

2.1. Methods

2.1.1. Participants
Sixteen Harvard affiliates or students, age 18–35, gave informed

consent and participated in the experiment. This sample size was
chosen following Konkle and Oliva (2012). Participants had normal
or corrected-to-normal vision.

2.1.2. Stimuli
The stimulus set consisted of 60 texform images generated from

images of 30 big, inanimate objects and 30 small, inanimate objects
(see Fig. 2). Big objects included things like cars and tables andwere
chair-sized and bigger; Small objects included things like mugs and
cameras, and were table-lamp sized and smaller. The texform stim-
uli were synthesized using an algorithm that preserves mid-level
image features from the original images, such as local combinations
of orientations (see Long et al., 2016 formore detailed description of
the procedure; see also Freeman & Simoncelli, 2011).

To ensure that these texforms were unrecognizable at the basic-
level, we asked 30 observers to name a larger set of texforms. We
then selected this set of 60 texforms to minimize recognizability,
even when we coded generously for basic-level identity (e.g.,
‘stove’ was accepted as a correct response for ‘jukebox’ because it
is the same sized object with a similar shape). In this final subset
of 60 items, the average identification accuracy was 2.83%,
SD = 4.02% (N = 30). See the Appendix for examples of two items
and guesses from 30 observers.

To create the Stroop displays, we required a visually big and a
visually small version of each texform. We used the original syn-
thesized texforms as the visually big size (440 ! 440 pixels), and
then rescaled the image to make a visually smaller size
(300 ! 300 pixels), and placed it centered in a uniform gray back-
ground (440 ! 440 pixels); see Fig. 3. Including the backgrounds,
visually big and small texforms had the same degree of visual angle
("18.5 deg). Within these backgrounds, visually big stimuli sub-
tended around "16–18 deg of visual angle, while visually small
stimuli subtended around "11–13 deg of visual angle.

2.1.3. Apparatus
Participants were positioned 57 cm away from an Apple iMac

computer (1024 ! 768 pixels, 60 Hz), such that 1 cm on the screen

Fig. 3. Example displays and stimuli used in Experiment 1. (A) (left) Examples of original objects and texforms. Texform stimuli were generated from pictures of big and small
objects using a texture-synthesis model (Freeman & Simoncelli, 2011). (right) Example Size-Stroop displays with texforms. Participant’s task was to make a visual size
judgment about which object was smaller or bigger on the screen. On congruent displays, the visual sizes of the texforms were congruent with the real-world sizes of their
original objects. For example, a texform of a dresser would be presented at a visually big size, and a texform of a boombox would be presented at a visually small size. On
incongruent displays, the visual sizes of the texforms were incongruent with the real-world sizes of their original objects. Here, the texform of a dresser was presented at a
visually small size, whereas the texform of a boombox was presented at a visually large size. (B) Average reaction times from Experiment 1 are plotted for congruent and
incongruent trials. Error bars represent within-subjects standard error (Morey, 2008). (C) The average Size–Stroop effect is plotted for each subject, measured by taking the
difference in reaction times between incongruent and congruent trials.
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was approximately equal to 1 deg of visual angle. Experiments were
runusingPsychtoolbox (Brainard, 1997; Pelli, 1997) inMatlab2010a.

2.1.4. Design
The design of this study was identical to Konkle and Oliva

(2012), except that stimuli were grayscale texforms instead of color
images of recognizable objects.

On every trial, a fixation cross first appeared for 700 ms. After-
wards, two grayscale texforms appeared on either side of fixation
on a white background. On half the trials, participants were asked
to judge which texform was visually bigger on the screen as fast as
possible. On the other half of the trials, participants were asked to
judge which texform was visually smaller on the screen as fast as
possible. Participants indicated which side of the screen corre-
sponded to the visually bigger or visually smaller image by press-
ing either the m key or the c key. The images remained present on
the display until the participant responded. High accuracy was
encouraged as incorrect responses resulted in feedback and a 5s
interval before the next trial began. After a correct response, there
was a 900 ms interval before the next trial.

Trials were blocked into 4 sets, where the task switched after
each set. Half of the participants started with the ‘‘visually bigger”
task, and half of the participants started with the ‘‘visually smaller”
task. To orient people to the tasks, all participants first saw exam-
ple trials and read instructions, and then completed 24 practice tri-
als with both task instructions (12 in each task) in the same
counterbalanced order as the experiment.

The critical manipulationwas that the two texforms on each dis-
play were presented at visual sizes that were either congruent or
incongruent with the real-world size of the original objects. For
example, in a congruent display, a shoe texformwould be presented
at a visually small size and a couch texformwould be presented at a
visually big size, as typically shoes are small and couches are big in
the world. On incongruent trials, this was reversed: a shoe texform
would be presented at a visually big size, and a couch texformwould
be presented at a visually small size. The fact the texformswere gen-
erated from objects of different real-world sizes was not mentioned
at any time during the experiment. Furthermore, participants never
saw a version of the Size-Stroop task with recognizable objects.

At an item level, each big object texform and small object tex-
form were counterbalanced such that they appeared equally in
both congruent/incongruent configurations, with the correct
answer on the left/right side of the screen, and across both visual
size tasks. Big and small object texforms were pseudo-randomly
paired, such that the same random pairs of big and small texforms
occurred together in the first half of the experiment for each partic-
ipant. In the second half of the experiment, big and small object
texforms were randomly paired together; this procedure was used
in Konkle and Oliva (2012) to take into account pictorial issues
related to recognizable objects, and for consistency we followed
the exact procedure here. Overall, there were 480 trials (30 pairs
of objects ! 2 congruent/incongruent conditions ! 2 left/right
sides of screen ! 2 bigger/smaller tasks ! 2 different pairings of
texforms; yielding 240 congruent/240 incongruent trials).

2.1.5. Analysis
Incorrect trials and trials for which reaction times (RT) were

shorter than 200 ms or longer than 1500 ms were excluded, fol-
lowing Konkle and Oliva (2012) (2.55%). Trimmed reaction times
were analyzed using a 2 ! 2 repeated-measures ANOVA, with con-
gruency (congruent/incongruent) and task (bigger/smaller on the
screen) as factors.

2.2. Results

Our main question of interest was whether we would observe a
Size-Stroop effect without basic-level object recognition. Fig. 3B

shows the reaction time for the congruent and incongruent trials.
Overall, we found evidence for a Size-Stroop effect: on incongruent
trials, participants were slower to make visual size judgments
when the real-world size of original objects were incongruent with
their sizes on the screen (Mdiff = 12.92 ms, SDdiff = 13.62 ms, main
effect of congruency, F(1,15) = 14.3, p = 0.002, g2

p = 0.489, Cohen’s
d = 0.95, Fig. 2B). Furthermore, 14 out of 16 participants showed
the effect in the predicted direction (Fig. 3C).

Across the two tasks (‘‘which is bigger” vs. ‘‘which is smaller”),
participants were equally fast (no main effect of task, F(1,15)
= 0.38,p = 0.548,g2

p = .025); taskdidnot interactwith themagnitude
of the Stroop effect (F(1,15) = 1.33, p = 0.266, g2

p = 0.082). Consistent
with this result, targeted t-tests revealed a Size-Stroop effect both
when participants reported which item was bigger (Mdiff = 8.18 ms,
SDdiff = 18.03 ms, t(15) = 1.82, p = 0.089) and when participants
reportedwhich itemwas smaller (Mdiff = 17.68 ms, SDdiff = 24.29 ms,
t(15) = 2.91, p = 0.011). Numerically, the effect was stronger when
observers were judging which texform was smaller on the screen,
which coincides with previous findings of Konkle and Oliva
(2012). No differences were observed in error rates (all p > 0.2).

Experiment1demonstrated thatparticipantswere faster at judg-
ing the visual sizes of the texforms when their original real-world
sizeswere congruentwith their visual sizes. Thus, even though these
texform stimuli were not identifiable, their original real-world sizes
impacted how quickly participants made visual size judgments in
the Size-Stroop paradigm. These results suggest that real-world size
information can be activated from mid-level feature processing
alone, even when basic-level recognition is impaired.

3. Experiment 2

The results of Experiment 1 rely on the fact some texture and
form features are preserved in the texform stimuli which still
enable participants to reliably process real-world size information,
even though they cannot recognize the original objects. However,
not all of the texform stimuli preserve real-world size information
equally well—although none of these texforms can be recognized
at the basic-level, some texforms can be reliably classified as big
or small objects, while other texforms cannot (Long et al., 2016).
Thus, we reasoned that texforms that are well classified by their
real-world size should do a better job of activating real-world size
information, and thus should also generate the largest Size-Stroop
effects. In Experiment 2, we systematically paired texforms accord-
ing to how classifiable they were by their real-world size, allowing
us to estimate Size-Stroop effects for individual displays. We
expect that displays with highly classifiable texforms should gen-
erate larger Size-Stroop effects.

3.1. Methods

3.1.1. Participants
Twenty-four Harvard affiliates or students were recruited, gave

informed consent, and participated in this study. The sample size
was larger than in Experiment 1 to have added power for
display-level effects. Participants were between 18 and 35 years
of age and had normal or corrected-to-normal vision.

3.1.2. Stimuli
Stimuli were the same as in Experiment 1, but were paired on

each display by their real-world size classifiability. To measure this
for each texform, an Amazon Mechanical Turk study was run in
which participants (N = 30) guessed the real-world size of each tex-
form using a Likert scale (1: small as a key, 8: big as an arch; these
data were also reported in Long et al. (2016); see Konkle and Oliva
(2011), for more extensive characterization of the 1–8 size scale
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and it’s relationship to actual physical size). Responseswere counted
as correct if they fell within any response in the correct size category
(Small: key-sized through backpack-sized, Big: chair-sized through
arch-sized), and averaged across subjects to create a size classifiabil-
ity score for each texform. Then, 30 big object texforms and 30 small
object texforms were ordered as a function of how well they were
classified as big versus small objects and then paired, creating 30
pairs of big and small objects. Importantly, these 30 pairs spanned
nearly the entire range of size classification accuracy: some pairs of
objects were very well classified as big or small objects, some were
near chance classification accuracy (50%),while otherswere system-
atically misclassified as big or small objects, leading to performance
well below chance (see Fig. 4A, range 16.7–95.0%, SD = 21.0%).

In addition, we made two changes to how we created visually
small versions of the texforms. First, we ensured that the transition
between the texforms and their backgrounds was gradual. To do

so, we gradually faded each texform into the background by first
overlaying a semi-transparent circle on each texform (using a
Gaussian window) before embedding them on gray backgrounds.
This blurring was done to remove a few edge artifacts introduced
by bounding box of the texforms. Secondly, we resized the images
to only 80% of their original size (352/440 pixels, "12–14 deg of
visual angle) to make the task slightly more difficult, thereby
increasing our chance of finding differences among individual dis-
plays. All other procedures were identical to Experiment 1.

3.1.3. Analysis
First, we removed outliers (4.0% of trials) and analyzed our data

in the same way that we did in Experiment 1. We also calculated
display-level Size-Stroop effects by subtracting the difference
between incongruent and congruent reaction times for each dis-
play after averaging across all subjects and both tasks.

Fig. 4. (A) Texforms are ordered by how classifiable they are as big or small in the real-world. Original objects are shown adjacent to their texforms separately for big objects
(top two rows) and small objects (bottom two rows). (B) Group average across all Stroop displays, replicating the main effects from Experiment 1. Error-bars represent
within-subjects standard error of the mean (Morey, 2008). (C) Display-Analyses. The strength of the Stroop effect for any given pair of texforms (y-axis) was predicted by how
well these texforms were classified as big versus small objects (x-axis). Black dots represent the Stroop effects for each pair of texforms depicted in Panel A.
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3.2. Results

Overall, we replicated the same pattern of effects we found in
Experiment 1 (Fig. 4B). Participants were faster at making visual
size judgments when the original sizes of the texforms were con-
gruent with their sizes on the screen (Mdiff = 18.05 ms,
SDdiff = 17.02 ms, F(1,23) = 30.9, p < 0.0001, g2

p = 0.573, see Fig. 4B).
In addition, we found an effect of task: participants were generally
slower when judging which texform was smaller on the screen (F
(1,23) = 8.8, p < 0.007, g2

p = 0.277) but also showed a stronger
Stroop effect (Mdiff = 28.34 ms, SDdiff = 23.29 ms) than when they
judged which texform was bigger on the screen (Mdiff = 8.26 ms,
SDdiff = 28.17 ms, congruency by task interaction, F(1,23) = 5.94,
p = 0.023, g2

p = .205). This was the same trend we observed in
Experiment 1, and that was found by Konkle and Oliva (2012) with
pictures of recognizable objects. Thus, we again found that real-
world size information is automatically activated by mid-level fea-
tures when observers make visual size judgments.

Our critical question for Experiment 2 was whether displays
with texforms that are well classified as big or small objects are
also the displays that generate the largest Size-Stroop effects. Con-
sistent with this prediction, the degree to which pairs of texforms
were classified as big versus small objects predicted the magnitude
of their Size-Stroop effect (r = 0.61, p < 0.001, see Fig. 4C). Further-
more, when we performed this same correlation in every subject,
we found a positive correlation in each case (average correlation
across subjects, r = 0.42, SD = 0.13). This result was also confirmed
with a linear regression analysis, where average size classification
accuracy significantly predicted display-by-display Stroop effects
(B = 215 ms, t(28) = 4.08, p = 0.0003, adjusted R2 = 0.35).

Overall, these results confirm and extend the results from
Experiment 1, demonstrating that the degree to which real-world
size information is present in the texforms also predicts the
strength at which we see automatic real-world size interference
in the Size-Stroop task.

4. Which mid-level features activate size information?

In Experiments 1 and 2, we found that the mid-level features
preserved in texforms activated real-world size information in
the Size-Stroop paradigm. What could these mid-level features
be? To provide an intuitive sense of what kind of information is
captured and could be playing a role in this Size-Stroop task, we
examined three candidate perceptual properties: perceived curva-
ture, perceived viewing distance, and depicted depth.

Intuitively, man-made objects that are big in the real world may
tend to be boxier in order to withstand gravitational and physical
constraints. Conversely, small, graspable objects can have almost
any given shape. Consistent with this idea, in prior work we found
that big and small objects tend to differ in perceived curvature; big
objects tend to be boxier than small objects (Long et al., 2016). To
ask whether observers use this to infer real-world size, we exam-
ined if the perceived curvature of a texform predicted it’s perceived
real-world size. If so, the curvature information preserved in the
texforms could trigger the automatic processing of real-world size.

In addition, it is possible that texforms preserve information
that conveys distance information. For example, it is possible that
big texforms appear further away than small texforms. If this were
the case, observers could infer real-world size from the perceived
distance of a texform (Amit, Algom, & Trope, 2009; see also
Paivio, 1975). That is, texform features might activate distance
information, and distance might trigger size representations. On
this account, mid-level features would not directly activate size
representations. To address this possibility, we had observers rate
the perceived distance of big and small texforms.

Finally, we examined whether texforms of big and small objects
differ in how much depth they depict. This dimension is related to
perceived distance, but measures not how far or close the object is
to the viewer, but how far the object itself extends in depth. For
example, a picture of a table that is rotated to show all four legs
may extend further in depth than when it is not rotated. If there
are consistent differences in depicted depth across big and small
objects that are also preserved the texform algorithm, observers
could be using this information to infer real-world size.

To explore these properties, we obtained behavioral ratings of
both texforms and their recognizable counterparts on these three
perceptual properties. Then, we examined if texforms’ values on
these properties predicted their perceived size in the real world.
Finally, we asked if any differences between big and small object
texforms on these three properties predict the Size-Stroop display
effects we observed in Experiment 2.

4.1. Methods

4.1.1. Stimuli
The texforms used in Experiments 1–2 and their recognizable

counterparts were divided into two counterbalanced sets. This
ensured that participants would never see the original objects from
which the texforms were generated. Thus, each counterbalanced
set contained 30 texforms and 30 original objects.

4.1.2. Participants
108 participants participated on Amazon Mechanical Turk for

the following rating studies. Overall, we collected ratings from 16
participants on both sets of 60 images (30 texforms and 30 recog-
nizable objects) for each property.

4.1.3. Procedure
Participants rated images in a random order on one of three prop-

erties using a 5-point Likert scale. To rate perceived curvature, the
instructions were: ‘‘How curvy or boxy is this object?” To rate per-
ceived viewing distance, the instructions were: ‘‘How far away is the
object depicted in this image?” To rate depicted depth, the instructions
were: ‘‘How much depth is depicted in the picture of this object?”

4.1.4. Analysis
For each image, scores for each of these three properties were

calculated by averaging across the 16 raters. We also computed
property difference scores for all Stroop displays used in Experi-
ment 2. Specifically, for each property and pair of big and small
texforms, we subtracted the property score for the small object
texform from the property score for the big object texform. This
was done because we expected big object texforms to have higher
values on each of these property (i.e., to be boxier, farther away,
and depicting more depth). Then, we correlated these difference
scores with the Stroop display effects (Incongruent RT – Congruent
RT) from Experiment 2. Finally, we also used a linear regression,
entering display-by-display differences in curvature, perceived
viewing distance, and depicted depth as predictors, and display-
by-display Stroop effects as the dependent variable.

4.2. Results

4.2.1. Curvature
Consistent with our previous findings (Long et al., 2016), we

found that recognizable big objects were perceived as boxier than
recognizable small objects (t(58) = 3.68, p < 0.001). This relation-
ship also held for texform images (t(58) = 4.07, p < 0.001). In addi-
tion, the perceived curvature of the texform stimuli correlated with
their perceived size in the real-world, when considering size as a
continuous dimension (r = 0.75, p < 0.001; Fig. 5A). Finally, the
Size-Stroop display effects seen in Experiment 2 were also
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predicted by the perceived curvature differences of the big and small
object texforms on each display (r = 0.48, p < 0.01; B = 31.97 ms, t(26)
= 2.77, p = 0.010; Fig. 5B). In sum, texforms that were perceived as
boxier were also perceived as bigger in the real world. And, when a
big object texform was boxy and a small object texform was curvy,
this pair of texforms tended to generate a robust Size-Stroop effect.
Thus, these results provide reasonable evidence that perceived curva-
ture is one property of the mid-level feature information in texforms
that is used to infer real-world object size.

4.2.2. Viewing distance
We next examined whether we would see this same pattern of

effects with perceived viewing distance. Recognizable pictures of big
objects were perceived as farther away than small objects (t(58)
= 12.63, p < 0.001). However, big object texforms were not perceived
as farther away than small object texforms (t(58) = 1.85, p = 0.07). A
texform’s perceived viewing distance also was not correlated with
its perceived size in the real world (r = 0.15, p = 0.25; Fig. 5A). Finally,
display-level differences between the perceived viewing distance of
big and small object texforms did not predict the Size-Stroop effects
they generated (r =#0.09, p = 0.63; B = 25.75 ms, t(26) = 0.37,
p = 0.72; Fig. 5B). Thus, it is unlikely that the Size-Stroop effects found
in the first two experiments are mediated through the automatic pro-
cessing of viewing distance. Further, the mid-level features preserved
by the texform algorithm do not preserve differences in perceived
viewing distance, so any effects found with texform stimuli are unli-
kely to be driven by this factor.

4.2.3. Depicted depth
Recognizable big object images had slightly more depicted

depth than recognizable small objects images (t(58) = 2.51,

p = 0.02). However, this was not true of texforms (t(58) = 0.64,
p = 0.527). Further, the depicted depth of the texform images did
not correlate with their perceived size in the real world (r = 0.17,
p = 0.18; Fig. 5A). Finally, display-level differences between the
depicted depth of big and small object texforms also did not pre-
dict the Size-Stroop effects they generated (r = 0.03, p = 0.86;
B = #11.89 ms, t(26) = #0.27, p = 0.79; Fig. 5B). Thus, as with view-
ing distance, is it unlikely that depicted depth information is trig-
gering size processing in the Size-Stroop effect, nor is depicted
depth information a part of the mid-level features preserved by
the texform algorithm.

5. General discussion

Overall, we found that real-world size information was auto-
matically activated when observers made visual size judgments,
even though basic-level recognition was impaired. In Experiment
1, we found that visual size judgments took longer when the reti-
nal sizes of unrecognizable texforms were incongruent with their
familiar, real-world sizes. In Experiment 2, we validated this result,
and further demonstrated that texforms that were well classified
as big versus small objects (while still remaining unrecognizable)
generated larger Size-Stroop effects. We then explored three possi-
ble perceptual properties that might be preserved in texforms and
underlie this Size-Stroop effect: curvature, viewing distance, and
depicted depth. Only perceived curvature information was reliably
retained in the texforms, and this feature predicted both the per-
ceived real-world size of texforms and the display-by-display
Stroop effects. Taken together, these results demonstrate that
intact basic-level recognition is not necessary for the visual system
to activate real-world size information. Furthermore, the presence

Fig. 5. (A) The perceived real-world size of the texforms (y-axis scale: 1 = small as a key, 8 = big as an arch) is plotted as a function of their perceived curvature (x-axis, left
panel), their perceived distance from the viewer (x-axis, middle panel), and the amount of depth depicted in each image (x-axis, right panel). Texforms generated from
pictures of small objects are colored in orange (gray); texforms generated from pictures of big objects are colored in blue (dark gray). (B) Each dot represents an individual
Stroop display (pair of texforms). The strength of the Stroop effect for each display (y-axis) is plotted as a function of how different the two items on the display were in terms
of their perceived curvature (big object texform – small object texform), perceived viewing distance, and depicted depth. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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of size-related perceptual features, including curvature, is
sufficient to automatically trigger real-world size processing in
the Size-Stroop paradigm.

5.1. Sufficient vs. necessary features of big and small objects

While the texture synthesis algorithm that we use to generate
these stimuli works by preserving mid-level feature information
from the original images, one drawback is that it does not provide
an intuitive explanation of what the critical features are that dis-
tinguish big from small objects. To this end, we explored a few can-
didates: perceived curvature, viewing distance, and depicted
depth. Of these, only the perceived curvature of the stimuli had
predictive power. Recognizable big objects tend to be boxier, rec-
ognizable small objects tend to be curvier, and the same is true
of texforms. This suggests that perceived curvature is one reliable
cue to real-world size. It is likely that curvature features are com-
puted relatively early in visual processing and that these features
can be used to trigger real-world size processing.

Whymight this be the case? Boxier objects tend to do a better job
of withstanding gravitational constraints: for example, buildings,
bookshelves, desks, and tables may all have boxier shape features
simply in order to support themselves (Long et al., 2016). We rarely
observe large, man-made structures that are very curvy and do not
have stable, boxy bases. In contrast, small objects can often be
hand-held and have rounder shapes that enable grasping. These
biases in shape features may cash out in systematic differences in
perceived curvature between big and small objects. If the visual sys-
tem is tuned to these natural statistics (i.e., Simoncelli & Olshausen,
2001), the visual systemmay learn, over time, that objects that tend
to be big in the real world tend to have more rectilinear features.

However, it is important tonote thatwedonot think that this sin-
gle curvy-boxy axis reflects the totality of the features that distin-
guish big objects from small objects. Indeed, there are likely other
mid-level features that contribute to our perception of an objects’
real-world size, and are capable of triggering real-world size
processing (e.g. informationcapturinggraspableor structural parts).
Further, while the texform algorithm does preserve somemid-level
features that are cues to real-world size, it likely eliminates—or
greatly reduces—others. This was the case with both viewing dis-
tance and depicted depth information: While recognizable pictures
of big objects were perceived as farther away and extending farther
in depth than small objects, thiswas not evident in judgments of big
and small object texforms. Overall, the present work highlights cur-
vature as a sufficient and reliable cue that activates real-world
object size, and opens up future avenues for quantifying the other
mid-level cues that may trigger real-world size processing.

5.2. Implications for cognitive architecture

Within a classic framework of object processing, the visual sys-
tem extracts feature information leading to basic-level recognition,
and these basic-level object representations then serve as pointers
to more general knowledge about those objects (Jolicoeur et al.,
1984; Rosch et al., 1976; but see Fabre-Thorpe, 2011; Macé,
Joubert, Nespoulous, & Fabre-Thorpe, 2009). While this framework
has intuitive appeal, the present results challenge a straightfor-
ward version of this model in which observers first explicitly rec-
ognize an object, and only then are able access knowledge about
that object. Instead, we find that knowledge about an object’s size
in the real world can be activated in the absence of explicit access
to a basic-level representation.

To accommodate these results, there are at least two possible
accounts with distinct implications for the underlying cognitive
architecture of object processing. First, within a classic hierarchy,
mid-level features could be implicitly activating many basic-level

object representations below the threshold for recognition, and this
activation is then spreading to activate higher-level knowledge
associated with those object representations. Note that this is still
a substantial departure from the idea that explicit access to the
basic-level is needed to access higher-level object knowledge. Alter-
natively, these findings are also consistentwith amodified architec-
ture, in whichmid-level perceptual systems have parallel pathways
to basic-level object representations as well as to broader category
representations. On this account of the data, mid-level representa-
tions are directly activating information about higher-level object
properties, including information about their size in the real world,
bypassing a basic-level object representation.

Given this modified architecture, one interesting possibility is
that the connection between mid-level features and real-world size
might actually facilitate the process of object recognition. Specifi-
cally, mid-level features could automatically feed-forward to acti-
vate broad category information, such as the fact that an object is
likely big or small in the realworld. This activation could in turn con-
strain the space of possible basic-level identities considered by the
visual system for basic-level recognition. The idea that directly acti-
vated higher-level knowledge can constrain object recognition is
analogous to the frameworkproposedbyBaret al. (2006),which sug-
gests that the context in which objects appear is processed prior to
and informs basic-level recognition. However, unlike Bar’s proposal
in which the surrounding scene informs basic-level recognition, the
mid-level perceptual features of the object itself could activate
knowledge that informs the process of basic-level recognition.

This proposal also raises new questions about how various
sources of object information combine. For example, mid-level
feature information may not always perfectly determine the
perceived size of an object—indeed, some big objects are rounder
(hot air balloons) while some small objects are squarer (pic-
ture frames). When mid-level features activate higher-level knowl-
edge about objects, to what degree do these facilitate, interfere
with, or are overridden by basic-level recognition processes? One
possibility is that the influence of mid-level predictions may play
a more substantial role when objects are occluded or obscured
(e.g. as in the case with texforms), compared to cases of clear cen-
tral presentations when objects can be quickly identified.

Finally, it is important to note that here, mid-level features trig-
gered real-world size processing specifically when participants
performed visual size judgments. It thus remains an open question
as to whether mid-level features will always activate real-world
size information, or if they will only do so when the task involves
a size-related component. Ultimately, future work is required to
explore the boundary conditions of this process and how it inter-
acts with other components of cognition (e.g., numerical cognition;
see Gabay, Leibovich, Henik, & Gronau, 2013; Henik, Gliksman,
Kallai, & Leibovich, 2017).

5.3. Conclusion

Overall, we find that real-world size information can be auto-
matically activated in the absence of basic-level recognition. These
results challenge the necessity of explicit basic-level recognition
for semantic access, and suggest that mid-level features may con-
tain rich information about broad category membership. We pro-
pose that examining how mid-level perceptual features activate
high-level semantic knowledge is a promising avenue towards
understanding how visual input rapidly contacts our conceptual
representations, and the architecture underlying visual cognition.

Acknowledgements

We would like to acknowledge J. Freeman for providing the
code used to generate the texform stimuli.

B. Long, T. Konkle / Cognition 168 (2017) 234–242 241



Appendix A

References

Amit, E., Algom, D., & Trope, Y. (2009). Distance-dependent processing of pictures
and words. Journal of Experimental Psychology: General, 138(3), 400–415.

Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., ...
Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the
National Academy of Sciences of the United States of America, 103(2), 449–454.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Cheung, O. S., & Gauthier, I. (2014). Visual appearance interacts with conceptual

knowledge in object recognition. Frontiers in Psychology, 5.
Chiou, R., & Ralph, M. A. L. (2016). Task-related dynamic division of labor between

anterior temporal and lateral occipital cortices in representing object size.
Journal of Neuroscience, 36(17), 4662–4668.

Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory.
Journal of Verbal Learning and Verbal Behavior, 8(2), 240–247.

DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in
Cognitive Sciences, 11(8), 333–341.

Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity.
Psychological Review, 96(3), 433–458.

Fabre-Thorpe, M. (2011). The characteristics and limits of rapid visual
categorization. Frontiers in Psychology, 2, 243.

Freeman, J., & Simoncelli, E. P. (2011). Metamers of the ventral stream. Nature
Neuroscience, 14(9), 1195–1201.

Gabay, S., Leibovich, T., Henik, A., & Gronau, N. (2013). Size before numbers:
Conceptual size primes numerical value. Cognition, 129(1), 18–23.

Gliksman, S. I., Leibovich, T., Melman, Y., & Henik, A. (2016). Automaticity of
conceptual magnitude. Scientific Reports, 6.

Grill-Spector, K., & Kanwisher, N. (2005). Visual recognition as soon as you know it
is there, you know what it is. Psychological Science, 16(2), 152–160.

Henik, A., Gliksman, Y., Kallai, A., & Leibovich, T. (2017). Size perception and the
foundation of numerical processing. Current Directions in Psychological Science,
26(1), 45–51.

Jolicoeur, P., Gluck, M. A., & Kosslyn, S. M. (1984). Pictures and names: Making
the connection. Cognitive Psychology, 16(2), 243–275.

Konkle, T., & Oliva, A. (2011). Canonical visual size for real-world objects. Journal of
Experimental Psychology: Human Perception and Performance, 37(1), 23–37.

Konkle, T., & Oliva, A. (2012). A familiar-size Stroop effect: Real-world size is an
automatic property of object representation. Journal of Experimental Psychology:
Human Perception and Performance, 38(3), 561–569.

Long, B., Konkle, T., Cohen, M. A., & Alvarez, G. A. (2016). Mid-level perceptual
features distinguish objects of different real-world sizes. Journal of Experimental
Psychology: General, 145(1), 95–109.

Macé, M. J. M., Joubert, O. R., Nespoulous, J. L., & Fabre-Thorpe, M. (2009). The time-
course of visual categorizations: You spot the animal faster than the bird. PLoS
ONE, 4(6), e5927.

Morey, R. D. (2008). Confidence intervals from normalized data: A correction to
Cousineau (2005). Reason, 4(2), 61–64.

Paivio, A. (1975). Perceptual comparisons through the mind’s eye. Memory &
Cognition, 3(6), 635–647.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vision, 10, 437–442.

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic
objects in natural categories. Cognitive Psychology, 8(3), 382–439.

Rubinsten, O., & Henik, A. (2002). Is an ant larger than a lion? Acta Psychologica, 111
(1), 141–154.

Sellaro, R., Treccani, B., Job, R., & Cubelli, R. (2015). Spatial coding of object typical
size: Evidence for a SNARC-like effect. Psychological Research Psychologische
Forschung, 79(6), 950–962.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural
representation. Annual Review of Neuroscience, 24(1), 1193–1216.

Fig. A1. Examples from the texform norming experiment for two images (upper panel, lower panel). Original images are depicted in (A) and were not shown during the
norming experiment. Instead, 30 observers were shown their corresponding texforms (B), and asked to ‘‘guess what this could be”; their responses for each texform are
shown in (C). Responses were coded liberally; for example, both ‘‘store display” and ‘‘bookcase” were counted as correct responses for the texform shown in B (upper panel).
Average identification accuracy across all 60 texforms was 2.83%.

242 B. Long, T. Konkle / Cognition 168 (2017) 234–242

http://refhub.elsevier.com/S0010-0277(17)30193-2/h0005
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0005
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0010
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0010
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0010
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0015
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0020
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0020
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0025
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0025
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0025
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0030
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0030
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0035
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0035
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0040
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0040
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0045
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0045
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0050
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0050
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0055
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0055
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0060
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0060
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0065
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0065
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0070
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0070
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0070
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0075
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0075
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0080
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0080
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0085
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0085
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0085
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0090
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0090
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0090
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0095
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0095
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0095
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0100
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0100
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0105
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0105
http://refhub.elsevier.com/S0010-0277(17)30193-2/h9000
http://refhub.elsevier.com/S0010-0277(17)30193-2/h9000
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0110
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0110
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0115
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0115
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0120
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0120
http://refhub.elsevier.com/S0010-0277(17)30193-2/h0120
http://refhub.elsevier.com/S0010-0277(17)30193-2/h9005
http://refhub.elsevier.com/S0010-0277(17)30193-2/h9005

	A familiar-size Stroop effect in the absence of basic-level recognition
	1 Introduction
	2 Experiment 1
	2.1 Methods
	2.1.1 Participants
	2.1.2 Stimuli
	2.1.3 Apparatus
	2.1.4 Design
	2.1.5 Analysis

	2.2 Results

	3 Experiment 2
	3.1 Methods
	3.1.1 Participants
	3.1.2 Stimuli
	3.1.3 Analysis

	3.2 Results

	4 Which mid-level features activate size information?
	4.1 Methods
	4.1.1 Stimuli
	4.1.2 Participants
	4.1.3 Procedure
	4.1.4 Analysis

	4.2 Results
	4.2.1 Curvature
	4.2.2 Viewing distance
	4.2.3 Depicted depth


	5 General discussion
	5.1 Sufficient vs. necessary features of big and small objects
	5.2 Implications for cognitive architecture
	5.3 Conclusion

	Acknowledgements
	Appendix A
	References


